文章目录
一、三角函数的正交性
下列三角函数组具有正交性
S
=
{
0
,
1
,
cos
(
x
)
,
sin
(
x
)
cos
(
2
x
)
,
sin
(
2
x
)
,
.
.
.
,
cos
(
n
x
)
,
sin
(
n
x
)
,
.
.
.
}
S=\{0,1,\cos(x),\sin(x)\,\cos(2x),\sin(2x),...,\cos(nx),\sin(nx),...\}
S={0,1,cos(x),sin(x)cos(2x),sin(2x),...,cos(nx),sin(nx),...}
具体表现为
∀
f
(
x
)
,
g
(
x
)
∈
S
∧
f
≠
g
,
∫
−
π
π
f
(
x
)
⋅
g
(
x
)
d
x
=
0
\forall f(x),g(x)\in S \wedge f\neq g,\int_{-\pi}^{\pi} f(x)\cdot g(x)dx=0
∀f(x),g(x)∈S∧f=g,∫−ππf(x)⋅g(x)dx=0
证明如下:
- 函数组内的不同函数正交
函数组内的两不同函数求内积时有以下三种情况 ( m , n ∈ Z ) (m,n\in Z) (m,n∈Z)
∫ − π π cos ( m x ) ⋅ cos ( n x ) d x = ∫ − π π 1 2 [ cos ( m + n ) x + cos ( m − n ) x ] d x = 0 ( m ≠ n ) \int_{-\pi}^{\pi} \cos (m x) \cdot \cos (n x) d x=\int_{-\pi}^{\pi} \frac{1}{2}[\cos (m+n) x+\cos (m-n) x] d x=0\,(m\neq n) ∫−ππcos(mx)⋅cos(nx)dx=∫−ππ21[cos(m+n)x+cos(m−n)x]dx=0(m=n)
∫ − π π sin ( m x ) ⋅ sin ( n x ) d x = ∫ − π π − 1 2 [ cos ( m + n ) x − cos ( m − n ) x ] d x = 0 ( m ≠ n ) \int_{-\pi}^{\pi} \sin (m x) \cdot \sin (n x) d x=\int_{-\pi}^{\pi} -\frac{1}{2}[\cos (m+n) x-\cos (m-n) x] d x=0\,(m\neq n) ∫−ππsin(mx)⋅sin(nx)dx=∫−ππ−21[cos(m+n)x−cos(m−n)x]dx=0(m=n)
∫ − π π cos ( m x ) ⋅ sin ( n x ) d x = ∫ − π π 1 2 [ sin ( m + n ) x − sin ( m − n ) x ] d x = 0 \int_{-\pi}^{\pi} \cos (m x) \cdot \sin (n x) d x=\int_{-\pi}^{\pi} \frac{1}{2}[\sin (m+n) x-\sin (m-n) x] d x=0 ∫−ππcos(mx)⋅sin(nx)dx=∫−ππ21[sin(m+n)x−sin(m−n)x]dx=0
- 函数组内同一函数内积
当 m = 0 m=0 m=0时,
∫ − π π cos 2 ( m x ) d x = 2 π , ∫ − π π sin 2 ( m x ) d x = 0 \int_{-\pi}^{\pi}\cos^2(mx)dx=2\pi,\, \int_{-\pi}^{\pi}\sin^2(mx)dx=0 ∫−ππcos2(mx)dx=2π,∫−ππsin2(mx)dx=0
当 m ≠ 0 m\neq0 m=0时,
∫ − π π cos ( m x ) ⋅ cos ( m x ) d x = ∫ − π π 1 2 [ cos ( 2 m x ) + 1 ] d x = π \int_{-\pi}^{\pi} \cos (m x) \cdot \cos (m x) d x=\int_{-\pi}^{\pi} \frac{1}{2}[\cos (2mx)+1] d x=\pi ∫−ππcos(mx)⋅cos(mx)dx=∫−ππ21[cos(2mx)+1]dx=π
∫ − π π sin ( m x ) sin ( m x ) d x = ∫ − π π ( 1 − cos 2 ( m x ) ) d x = π \int_{-\pi}^{\pi} \sin(mx) \sin(mx) dx=\int_{-\pi}^{\pi} (1-\cos^2(mx))dx=\pi ∫−ππsin(mx)sin(mx)dx=∫−ππ(1−cos2(mx))dx=π
二、周期为 2 π 2\pi 2π的级数展开
考虑函数
f
(
x
)
=
f
(
x
+
2
π
)
f(x)=f(x+2\pi )
f(x)=f(x+2π),将函数写成如下形式
f
(
x
)
=
∑
n
=
0
∞
a
n
cos
(
n
x
)
+
b
n
sin
(
n
x
)
f(x)=\sum_{n=0}^{\infty} a_n\cos (nx)+b_n\sin(nx)
f(x)=n=0∑∞ancos(nx)+bnsin(nx)
或是
f
(
x
)
=
a
0
2
+
∑
n
=
1
∞
a
n
cos
(
n
x
)
+
b
n
sin
(
n
x
)
f(x)=\dfrac{a_0}2 +\sum_{n=1}^{\infty} a_n\cos (nx)+b_n\sin(nx)
f(x)=2a0+n=1∑∞ancos(nx)+bnsin(nx)
显然函数的周期仍然为
2
π
2\pi
2π.
现通过将
f
(
x
)
f(x)
f(x)与正交函数组中的函数求内积的方法求出级数中的系数项,考虑展开式的后一种写法最终可以得到
a
n
=
1
π
∫
−
π
π
f
(
x
)
cos
(
n
x
)
d
x
a_n=\dfrac{1}\pi\int_{-\pi}^{\pi}f(x)\cos(nx)dx
an=π1∫−ππf(x)cos(nx)dx
b
n
=
1
π
∫
−
π
π
f
(
x
)
sin
(
n
x
)
d
x
b_n=\dfrac{1}\pi\int_{-\pi}^{\pi}f(x)\sin(nx)dx
bn=π1∫−ππf(x)sin(nx)dx
三、周期为2L的级数展开
周期为2L的函数主要通过坐标系变换得到其傅里叶级数展开。
对于函数
f
(
t
)
=
f
(
t
+
2
L
)
f(t)=f(t+2L)
f(t)=f(t+2L),令
x
=
π
L
⋅
t
x=\dfrac{\pi}{L}\cdot t
x=Lπ⋅t
并记
g
(
x
)
=
g
(
π
L
⋅
t
)
=
f
(
t
)
g(x)=g(\dfrac{\pi}{L}\cdot t)=f(t)
g(x)=g(Lπ⋅t)=f(t)
于是有
g
(
x
+
2
π
)
=
g
(
π
L
⋅
t
+
2
π
)
=
g
(
π
L
(
t
+
2
L
)
)
=
g
(
x
)
g(x+2\pi)=g(\dfrac{\pi}{L}\cdot t+2\pi)=g(\dfrac{\pi}{L}(t+2L))=g(x)
g(x+2π)=g(Lπ⋅t+2π)=g(Lπ(t+2L))=g(x),即
g
(
x
)
g(x)
g(x)是一周期为
2
π
2\pi
2π的周期函数。
根据周期为
2
π
2\pi
2π的函数的傅里叶展开公式,可以得到
g
(
x
)
g(x)
g(x)的各项系数为
g
(
x
)
=
a
0
2
+
∑
n
=
1
∞
a
n
cos
(
n
x
)
+
b
n
sin
(
n
x
)
g(x)=\dfrac{a_0}2 +\sum_{n=1}^{\infty} a_n\cos (nx)+b_n\sin(nx)
g(x)=2a0+n=1∑∞ancos(nx)+bnsin(nx)
a
n
=
1
π
∫
−
π
π
f
(
x
)
cos
(
n
x
)
d
x
a_n=\dfrac{1}\pi\int_{-\pi}^{\pi}f(x)\cos(nx)dx
an=π1∫−ππf(x)cos(nx)dx
b
n
=
1
π
∫
−
π
π
f
(
x
)
sin
(
n
x
)
d
x
b_n=\dfrac{1}\pi\int_{-\pi}^{\pi}f(x)\sin(nx)dx
bn=π1∫−ππf(x)sin(nx)dx
带入
x
=
π
L
⋅
t
x=\dfrac{\pi}{L}\cdot t
x=Lπ⋅t即有
f
(
t
)
=
g
(
x
)
=
a
0
2
+
∑
n
=
1
∞
a
n
cos
(
n
π
L
⋅
t
)
+
b
n
sin
(
n
π
L
⋅
t
)
f(t)=g(x)=\dfrac{a_0}2 +\sum_{n=1}^{\infty} a_n\cos (\dfrac{n\pi}{L}\cdot t)+b_n\sin(\dfrac{n\pi}{L}\cdot t)
f(t)=g(x)=2a0+n=1∑∞ancos(Lnπ⋅t)+bnsin(Lnπ⋅t)
a
n
=
1
π
∫
−
L
L
f
(
x
)
cos
(
n
π
L
⋅
t
)
d
(
π
L
⋅
t
)
=
1
L
∫
−
L
L
f
(
t
)
cos
(
n
π
L
⋅
t
)
d
t
a_n=\dfrac{1}\pi\int_{-L}^{L}f(x)\cos(\dfrac{n\pi}{L}\cdot t)\,d(\dfrac{\pi}{L}\cdot t)=\dfrac{1}L\int_{-L}^{L}f(t)\cos(\dfrac{n\pi}{L}\cdot t)dt
an=π1∫−LLf(x)cos(Lnπ⋅t)d(Lπ⋅t)=L1∫−LLf(t)cos(Lnπ⋅t)dt
b
n
=
1
π
∫
−
L
L
f
(
x
)
sin
(
n
π
L
⋅
t
)
d
(
π
L
⋅
t
)
=
1
L
∫
−
L
L
f
(
t
)
sin
(
n
π
L
⋅
t
)
d
t
b_n=\dfrac{1}\pi\int_{-L}^{L}f(x)\sin(\dfrac{n\pi}{L}\cdot t)\,d(\dfrac{\pi}{L}\cdot t)=\dfrac{1}L\int_{-L}^{L}f(t)\sin(\dfrac{n\pi}{L}\cdot t)dt
bn=π1∫−LLf(x)sin(Lnπ⋅t)d(Lπ⋅t)=L1∫−LLf(t)sin(Lnπ⋅t)dt
由于工程上的时间并没有负值,因此记
T
=
2
L
T=2L
T=2L为函数的周期,并记
ω
=
2
π
T
\omega=\dfrac{2\pi}{T}
ω=T2π,函数即满足
f
(
t
)
=
f
(
t
+
T
)
f(t)=f(t+T)
f(t)=f(t+T). 此时函数的傅里叶展开为
f
(
t
)
=
a
0
2
+
∑
n
=
1
∞
a
n
cos
(
n
ω
t
)
+
b
n
sin
(
n
ω
t
)
f(t)=\dfrac{a_0}2 +\sum_{n=1}^{\infty} a_n\cos (n\omega t)+b_n\sin(n\omega t)
f(t)=2a0+n=1∑∞ancos(nωt)+bnsin(nωt)
a
n
=
ω
π
∫
0
T
f
(
t
)
cos
(
n
ω
t
)
d
t
a_n=\dfrac{\omega}\pi\int_{0}^{T}f(t)\cos(n\omega t)dt
an=πω∫0Tf(t)cos(nωt)dt
b
n
=
ω
π
∫
0
T
f
(
t
)
sin
(
n
ω
t
)
d
t
b_n=\dfrac{\omega}\pi\int_{0}^{T}f(t)\sin(n\omega t)dt
bn=πω∫0Tf(t)sin(nωt)dt
四、傅里叶级数的复数形式
4.1 周期为 2 π 2\pi 2π的函数的傅里叶级数展开
这里要用到欧拉公式(欧拉方程,Euler’s formula)
e
i
θ
=
cos
(
θ
)
+
i
sin
(
θ
)
e^{i\theta}=\cos(\theta)+i\sin(\theta)
eiθ=cos(θ)+isin(θ)
于是可以得到
cos
(
θ
)
=
e
i
θ
+
e
−
i
θ
2
,
sin
(
θ
)
=
e
i
θ
−
e
−
i
θ
2
i
\cos(\theta)=\dfrac{e^{i\theta}+e^{-i\theta}}{2},\, \sin(\theta)=\dfrac{e^{i\theta}-e^{-i\theta}}{2i}
cos(θ)=2eiθ+e−iθ,sin(θ)=2ieiθ−e−iθ
带入方程中有
f
(
x
)
=
a
0
2
+
∑
n
=
1
∞
[
a
n
cos
(
n
x
)
+
b
n
sin
(
n
x
)
]
=
a
0
2
+
∑
n
=
1
∞
a
n
×
e
i
n
x
+
e
−
i
n
x
2
+
b
n
×
e
i
n
x
−
e
−
i
n
x
2
i
f(x)=\dfrac{a_0}{2}+\sum_{n=1}^{\infty}[ a_n\cos(nx)+b_n\sin(nx)]=\dfrac{a_0}2+\sum_{n=1}^{\infty}a_n\times\dfrac{e^{inx}+e^{-inx}}{2}+b_n\times\dfrac{e^{inx}-e^{-inx}}{2i}
f(x)=2a0+n=1∑∞[ancos(nx)+bnsin(nx)]=2a0+n=1∑∞an×2einx+e−inx+bn×2ieinx−e−inx
整理可得
f
(
x
)
=
a
0
2
+
∑
n
=
1
∞
a
n
−
i
b
n
2
×
e
i
n
x
+
∑
n
=
1
∞
a
n
+
i
b
n
2
×
e
−
i
n
x
‾
f(x)=\dfrac{a_0}2+\sum_{n=1}^{\infty}\dfrac{a_n-ib_n}2\times e^{inx}+\underline{\sum_{n=1}^{\infty}\dfrac{a_n+ib_n}2\times e^{-inx}}
f(x)=2a0+n=1∑∞2an−ibn×einx+n=1∑∞2an+ibn×e−inx
下划线中的部分用
−
n
→
n
-n\rightarrow n
−n→n即有
∑
n
=
1
∞
a
n
+
i
b
n
2
×
e
−
i
n
x
=
∑
n
=
−
∞
−
1
a
−
n
+
i
b
−
n
2
×
e
i
n
x
\sum_{n=1}^{\infty}\dfrac{a_n+ib_n}2\times e^{-inx}=\sum_{n=-\infty}^{-1}\dfrac{a_{-n}+ib_{-n}}2\times e^{inx}
n=1∑∞2an+ibn×e−inx=n=−∞∑−12a−n+ib−n×einx
根据前文的
a
n
和
b
n
a_n和b_n
an和bn的表达式易知
a
−
n
=
a
n
,
b
−
n
=
−
b
n
a_{-n}=a_{n},b_{-n}=-b_n
a−n=an,b−n=−bn带入上式中即有
∑
n
=
1
∞
a
n
+
i
b
n
2
×
e
−
i
n
x
=
∑
n
=
−
∞
−
1
a
n
−
i
b
n
2
×
e
i
n
x
\sum_{n=1}^{\infty}\dfrac{a_n+ib_n}2\times e^{-inx}=\sum_{n=-\infty}^{-1}\dfrac{a_{n}-ib_{n}}2\times e^{inx}
n=1∑∞2an+ibn×e−inx=n=−∞∑−12an−ibn×einx
另外
a
0
2
=
a
0
+
i
b
0
2
×
e
−
i
0
x
\dfrac{a_0}{2}=\dfrac{a_0+ib_0}2\times e^{-i0x}
2a0=2a0+ib0×e−i0x
于是有
f
(
x
)
=
(
a
n
−
i
b
n
2
×
e
i
n
x
)
n
=
0
+
∑
n
=
1
∞
a
n
−
i
b
n
2
×
e
i
n
x
+
∑
n
=
−
∞
−
1
a
n
−
i
b
n
2
×
e
i
n
x
=
∑
a
n
−
i
b
n
2
×
e
i
n
x
f(x)=(\dfrac{a_{n}-ib_{n}}2\times e^{inx})_{n=0}+\sum_{n=1}^{\infty}\dfrac{a_n-ib_n}2\times e^{inx}+\sum_{n=-\infty}^{-1}\dfrac{a_{n}-ib_{n}}2\times e^{inx}=\sum \dfrac{a_n-ib_n}2\times e^{inx}
f(x)=(2an−ibn×einx)n=0+n=1∑∞2an−ibn×einx+n=−∞∑−12an−ibn×einx=∑2an−ibn×einx
记
c
n
=
a
n
−
i
b
n
2
=
1
2
π
[
∫
−
π
π
f
(
x
)
cos
(
n
x
)
d
x
−
i
∫
−
π
π
f
(
x
)
sin
(
n
x
)
d
x
]
=
1
2
π
∫
−
π
π
f
(
x
)
[
cos
(
n
x
)
−
i
sin
(
x
)
]
d
x
=
1
2
π
∫
−
π
π
f
(
x
)
e
−
i
n
x
d
x
c_n= \dfrac{a_n-ib_n}2=\dfrac1{2\pi}[\int_{-\pi}^{\pi}f(x)\cos(nx)dx-i\int_{-\pi}^{\pi}f(x)\sin(nx)dx]=\dfrac{1}{2\pi}\int_{-\pi}^{\pi}f(x)[\cos(nx)-i\sin(x)]dx=\dfrac{1}{2\pi}\int_{-\pi}^{\pi}f(x)e^{-inx}dx
cn=2an−ibn=2π1[∫−ππf(x)cos(nx)dx−i∫−ππf(x)sin(nx)dx]=2π1∫−ππf(x)[cos(nx)−isin(x)]dx=2π1∫−ππf(x)e−inxdx得到
f
(
x
)
=
∑
c
n
×
e
i
n
x
,
c
n
=
a
n
−
i
b
n
2
{f(x)=\sum c_n\times e^{inx}} \, ,c_n= \dfrac{a_n-ib_n}2
f(x)=∑cn×einx,cn=2an−ibn
上式即周期为
2
π
2\pi
2π时的傅里叶级数的复数形式。
值得注意的是,对于实数范围内的函数, c n c_n cn与 c − n c_{-n} c−n是共轭的。
取 f ( x ) f(x) f(x)展开式中当的 ± n \pm n ±n项求和为实数即可证明二者是共轭。
4.2 周期为 2 L 2L 2L的函数的傅里叶级数的复数形式
周期为
2
L
2L
2L的函数计算过程与周期为
2
π
2\pi
2π时的计算过程大致相同,其具体形式为
f
(
t
)
=
f
(
t
+
T
)
=
∑
c
n
e
i
n
ω
t
,
c
n
=
1
L
∫
0
L
f
(
x
)
e
−
i
n
w
x
d
x
f(t)=f(t+T)=\sum c_ne^{in\omega t}\, , c_n=\dfrac{1}{L}\int_{0}^{L}f(x)e^{-inwx}dx
f(t)=f(t+T)=∑cneinωt,cn=L1∫0Lf(x)e−inwxdx
a
n
和
b
n
a_n和b_n
an和bn的表达式前文已经提及.
五、傅里叶变换
对于非周期函数,可以将其理解成周期为
∞
\infty
∞的周期函数,此时
T
→
∞
,
w
=
2
π
T
→
0
T\rightarrow\infty,w=\dfrac{2\pi}{T}\rightarrow 0
T→∞,w=T2π→0.
f
(
t
)
=
lim
T
→
∞
f
T
(
t
)
=
lim
ω
→
0
∑
−
∞
∞
1
T
∫
0
T
f
T
(
t
)
e
−
i
n
ω
t
d
t
⋅
e
i
n
ω
t
=
lim
ω
→
0
∑
−
∞
∞
ω
2
π
∫
0
T
f
T
(
t
)
e
−
i
n
w
t
d
t
⋅
e
i
n
ω
t
\begin{aligned} f(t)=\lim_{T\rightarrow\infty}f_{T}(t) &=\lim_{\omega\rightarrow 0}\sum_{-\infty}^{\infty} \frac{1}{T} \int_{0}^{T} f_{T}(t) e^{-i n \omega t} d t \cdot e^{i n \omega t} \\ &=\lim_{\omega\rightarrow 0}\sum_{-\infty}^{\infty} \frac{\omega}{2 \pi} \int_{0}^{T} f_{T}(t) e^{-i n w t} d t \cdot e^{i n \omega t} \end{aligned}
f(t)=T→∞limfT(t)=ω→0lim−∞∑∞T1∫0TfT(t)e−inωtdt⋅einωt=ω→0lim−∞∑∞2πω∫0TfT(t)e−inwtdt⋅einωt
注意到
ω
=
(
n
+
1
)
ω
−
n
ω
=
Δ
ω
\omega=(n+1)\omega-n\omega=\Delta \omega
ω=(n+1)ω−nω=Δω,上式可以继续化简为
f
(
t
)
=
lim
T
→
∞
f
T
(
T
)
=
lim
ω
→
0
∑
−
∞
+
∞
Δ
ω
2
π
∫
−
∞
+
∞
f
(
t
)
e
−
i
n
ω
t
d
t
⋅
e
i
n
ω
t
=
∫
−
∞
+
∞
d
ω
2
π
∫
−
∞
+
∞
f
(
t
)
e
−
i
ω
t
d
t
⋅
e
i
ω
t
=
1
2
π
∫
−
∞
+
∞
∫
−
∞
+
∞
f
(
t
)
e
−
i
ω
t
d
t
⋅
e
i
ω
t
d
ω
\begin{aligned} f(t)=\lim _{T \rightarrow \infty} f_{T} (T) &=\lim _{\omega \rightarrow 0} \sum_{-\infty}^{+\infty} \frac{\Delta \omega}{2 \pi} \int_{-\infty}^{+ \infty} f(t) e^{-i n \omega t } d t \cdot e^{i n \omega t} \\ &=\int_{-\infty}^{+\infty} \frac{d\omega}{2 \pi} \int_{-\infty}^{+\infty} f(t) e^{-i \omega t } d t \cdot e^{i \omega t} \\ &=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(t) e^{-i \omega t} d t \cdot e^{i \omega t} d \omega \end{aligned}
f(t)=T→∞limfT(T)=ω→0lim−∞∑+∞2πΔω∫−∞+∞f(t)e−inωtdt⋅einωt=∫−∞+∞2πdω∫−∞+∞f(t)e−iωtdt⋅eiωt=2π1∫−∞+∞∫−∞+∞f(t)e−iωtdt⋅eiωtdω
记
F
(
ω
)
=
∫
−
∞
∞
f
(
t
)
e
−
i
ω
t
d
t
F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt
F(ω)=∫−∞∞f(t)e−iωtdt为
f
(
t
)
f(t)
f(t)的傅里叶变换,带入上式得到
f
(
t
)
=
1
2
π
∫
−
∞
∞
F
(
ω
)
e
i
ω
t
d
ω
f(t)=\dfrac1{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{i\omega t}d\omega
f(t)=2π1∫−∞∞F(ω)eiωtdω即为傅里叶变换的逆变换。