傅里叶级数展开和傅里叶变换(一)

本文是DR_CAN系列教学视频的学习笔记

一、三角函数的正交性

下列三角函数组具有正交性
S = { 0 , 1 , cos ⁡ ( x ) , sin ⁡ ( x )   cos ⁡ ( 2 x ) , sin ⁡ ( 2 x ) , . . . , cos ⁡ ( n x ) , sin ⁡ ( n x ) , . . . } S=\{0,1,\cos(x),\sin(x)\,\cos(2x),\sin(2x),...,\cos(nx),\sin(nx),...\} S={ 0,1,cos(x),sin(x)cos(2x),sin(2x),...,cos(nx),sin(nx),...}
具体表现为
∀ f ( x ) , g ( x ) ∈ S ∧ f ≠ g , ∫ − π π f ( x ) ⋅ g ( x ) d x = 0 \forall f(x),g(x)\in S \wedge f\neq g,\int_{-\pi}^{\pi} f(x)\cdot g(x)dx=0 f(x),g(x)Sf=g,ππf(x)g(x)dx=0
证明如下:

  1. 函数组内的不同函数正交
    函数组内的两不同函数求内积时有以下三种情况 ( m , n ∈ Z ) (m,n\in Z) (m,nZ)

∫ − π π cos ⁡ ( m x ) ⋅ cos ⁡ ( n x ) d x = ∫ − π π 1 2 [ cos ⁡ ( m + n ) x + cos ⁡ ( m − n ) x ] d x = 0   ( m ≠ n ) \int_{-\pi}^{\pi} \cos (m x) \cdot \cos (n x) d x=\int_{-\pi}^{\pi} \frac{1}{2}[\cos (m+n) x+\cos (m-n) x] d x=0\,(m\neq n) ππcos(mx)cos(nx)dx=ππ21[cos(m+n)x+cos(mn)x]dx=0(m=n)

∫ − π π sin ⁡ ( m x ) ⋅ sin ⁡ ( n x ) d x = ∫ − π π − 1 2 [ cos ⁡ ( m + n ) x − cos ⁡ ( m − n ) x ] d x = 0   ( m ≠ n ) \int_{-\pi}^{\pi} \sin (m x) \cdot \sin (n x) d x=\int_{-\pi}^{\pi} -\frac{1}{2}[\cos (m+n) x-\cos (m-n) x] d x=0\,(m\neq n) ππsin(mx)sin(nx)dx=ππ21[cos(m+n)xcos(mn)x]dx=0(m=n)

∫ − π π cos ⁡ ( m x ) ⋅ sin ⁡ ( n x ) d x = ∫ − π π 1 2 [ sin ⁡ ( m + n ) x − sin ⁡ ( m − n ) x ] d x = 0 \int_{-\pi}^{\pi} \cos (m x) \cdot \sin (n x) d x=\int_{-\pi}^{\pi} \frac{1}{2}[\sin (m+n) x-\sin (m-n) x] d x=0 ππcos(mx)sin(nx)dx=ππ21[sin(m+n)xsin(mn)x]dx=0

  1. 函数组内同一函数内积
    m = 0 m=0 m=0时,
    ∫ − π π cos ⁡ 2 ( m x ) d x = 2 π ,   ∫ − π π sin ⁡ 2 ( m x ) d x = 0 \int_{-\pi}^{\pi}\cos^2(mx)dx=2\pi,\, \int_{-\pi}^{\pi}\sin^2(mx)dx=0 ππcos2(mx)dx=2π,ππsin2(mx)dx=0
    m ≠ 0 m\neq0 m=0时,
    ∫ − π π cos ⁡ ( m x ) ⋅ cos ⁡ ( m x ) d x = ∫ − π π 1 2 [ cos ⁡ ( 2 m x ) + 1 ] d x = π \int_{-\pi}^{\pi} \cos (m x) \cdot \cos (m x) d x=\int_{-\pi}^{\pi} \frac{1}{2}[\cos (2mx)+1] d x=\pi ππcos(mx)cos(mx)dx=ππ21[cos(2mx)+1]dx=π
    ∫ − π π sin ⁡ ( m x ) sin ⁡ ( m x ) d x = ∫ − π π ( 1 − cos ⁡ 2 ( m x ) ) d x = π \int_{-\pi}^{\pi} \sin(mx) \sin(mx) dx=\int_{-\pi}^{\pi} (1-\cos^2(mx))dx=\pi ππsin(mx)sin(mx)dx=ππ(1cos2(mx))dx=π

二、周期为 2 π 2\pi 2π的级数展开

考虑函数 f ( x ) = f ( x + 2 π ) f(x)=f(x+2\pi ) f(x)=f(x+2π),将函数写成如下形式
f ( x ) = ∑ n = 0 ∞ a n cos ⁡ ( n x ) + b n sin ⁡ ( n x ) f(x)=\sum_{n=0}^{\infty} a_n\cos (nx)+b_n\sin(nx) f(x)=n=0ancos(nx)+bnsin(nx)
或是
f ( x ) = a 0 2 + ∑ n = 1 ∞ a n cos ⁡ ( n x ) + b n sin ⁡ ( n x ) f(x)=\dfrac{a_0}2 +\sum_{n=1}^{\infty} a_n\cos (nx)+b_n\sin(nx) f(x)=2a0+n=1ancos(nx)+bnsin<

  • 4
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值