goodljq
码龄4年
关注
提问 私信
  • 博客:34,362
    34,362
    总访问量
  • 8
    原创
  • 1,532,214
    排名
  • 54
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2021-05-14
博客简介:

goodljq的博客

查看详细资料
个人成就
  • 获得62次点赞
  • 内容获得18次评论
  • 获得299次收藏
创作历程
  • 8篇
    2021年
成就勋章
TA的专栏
  • 文献阅读
    2篇
  • 知识总结
    6篇
  • 专题综述
    1篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习pytorch图像处理数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

因果推断边学习边分享(二)

第一部分链接:Jackie:因果推断边学习边分享(一)目录 背景引入 因果推断简介 Rubin Causal Model (RCM) 及相关方法 传统RCM方法 深度RCM方法 Structural Equation Modeling (SEM) 及相关方法 因果关系的驳斥 因果推断与机器学习 学习材料推荐 后记 3 Rubin Causal Model (RCM) 及相关方法Rubi
原创
发布博客 2021.06.30 ·
2711 阅读 ·
8 点赞 ·
1 评论 ·
25 收藏

因果推断边学习边分享(一)

前段时间被导师安利了Judy Pearl的书《The Book of Why》,开始关注因果推断这个领域。分享下自己对因果推断相关方法的学习,不准确之处还请大佬们批评指正。目录背景引入 因果推断简介 Rubin Causal Model (RCM) 及相关方法 Structural Equation Modeling (SEM) 及相关方法 因果关系的驳斥 因果推断与机器学习 学习材料推荐 后记1 背景引入因果推断通俗来讲就是“透过现象看本质”,尤其是当现象和本质恰恰相反的时候。
原创
发布博客 2021.06.24 ·
1730 阅读 ·
7 点赞 ·
1 评论 ·
50 收藏

PyTorch单卡/多卡下模型保存/加载

由于训练和测试所使用的硬件条件不同,在模型的保存和加载过程中可能因为单GPU和多GPU环境的不同带来模型不匹配等问题。这里对PyTorch框架下单卡/多卡下模型的保存和加载问题进行排列组合(=4),样例模型是torchvision中预训练模型resnet152,不尽之处欢迎大家补充。1 数据格式与存储内容1.1 模型存储格式PyTorch存储模型主要采用pkl,pt,pth三种格式。就使用层名来说没有区别,这里不做具体的讨论。第5部分中列出了笔者查阅到的一些资料,感兴趣的读者可以进一步研究.
原创
发布博客 2021.05.25 ·
3851 阅读 ·
9 点赞 ·
1 评论 ·
47 收藏

单细胞数据分析工具scvi介绍

之前听师兄在组会上介绍了scvi,恰巧最近在用scvi做一些分析,感觉这个方法很精巧效果也不错,因此研究了一下原始论文,这里简要介绍一下这个单细胞数据分析工具的新星。scvi是Nature Methods在2018年12月发表的一个单细胞RNA测序(scRNA-seq)数据的集成分析平台,预印版文章在2018年3月就已经在bioRxiv上线。scvi是一个快速的多功能方法,整合了来自机器学习、统计模型、概率图模型等领域的思想和模型,应用到了单细胞数据的多种下游分析上来,相比其他针对单一下游分析的方法来说
原创
发布博客 2021.05.21 ·
4096 阅读 ·
7 点赞 ·
8 评论 ·
26 收藏

多标签学习与深度森林学习笔记

周志华老师团队Multi-Label Learning with Deep Forest (MLDF)报道很多,各大机器学习平台也都就这篇文章的亮点给出了分析。近日在准备组会报告时较为详细地拜读了一下,也由此简单了解了一下多标签学习的相关内容。正如论文作者所述,MLDF的最大优势在于: 限制模型复杂性以防止过拟合 可以根据用户需求进行优化 实验表明,在多个标准数据集(benchmark dataset)上,深度森林在六种多标签学习的评价方法中取得了最佳表现,同时也具有在多标签问题中研
原创
发布博客 2021.05.21 ·
1085 阅读 ·
2 点赞 ·
0 评论 ·
14 收藏

单细胞RNA-seq数据分布的选择

在单细胞RNA测序数据(single-cell RNA sequencing,以下简称scRNA-seq)的分析中,对数据分布的模型假设是很重要的一步,合理的数据分布模型直接影响了后续的分析流程或者是方法开发。例如单细胞差异表达分析方法就是基于数据的分布,通过对分布参数的假设检验,进而判断两组数据是否存在差异。那么人们是如何一步步探索适合的scRNA-seq数据的分布的呢?现阶段的发展又是怎样的?有哪些新产生的问题?本文将就这这些问题加以梳理。这里的分布指的是某一基因转录出RNA的量在一组细胞中(gene
原创
发布博客 2021.05.21 ·
1864 阅读 ·
6 点赞 ·
1 评论 ·
19 收藏

图解医学影像纹理特征

在医学影像分析中,纹理(texture)特征被广泛地应用于定量化描述病灶的特性。相比病灶影像的统计学特征和形状特征,纹理特征的计算往往较为复杂,不易于搞懂其背后的原理。然而,学习过程中建立对概念直观的认识(intuition)对理解问题的本质很有帮助,这也是本文的出发点。本文尝试解决如下问题: 医学影像特征包的官方文档给了纹理特征数学定义,但是理解起来不够直观 网络上有许多介绍纹理特征的帖子,但是每个帖子介绍的内容有限; 少有文章关注不同类型纹理特征之间的比较,不易于理解纹理特
原创
发布博客 2021.05.21 ·
3645 阅读 ·
8 点赞 ·
1 评论 ·
60 收藏

回归评测指标R2可以是负数吗?

在评测回归模型时,是一个常用的指标(其出现最早可追溯到初中时期...)。印象里的的取值为[0,1],的值越接近1,说明回归模型对数据的拟合程度越好。问题源自一次使用sklearn做线性回归的实验,笔者使用了内置的计算的函数,惊奇地发现得到的居然是一个负数。一方面说明回归模型失败了[捂脸],而另一方面也令人颇为不解——为什么可以为负呢?带着强烈的好奇心,笔者从sklearn的文档开始读起,弄明白了这是怎么回事。随手记录下来供大家参考。先说结论:确实有两种不同的定义,其中一种的定义域包含负值
原创
发布博客 2021.05.20 ·
15039 阅读 ·
15 点赞 ·
5 评论 ·
51 收藏