"读书千遍,其义自见" 古人诚不欺我

作者回忆起童年时期背诵唐诗宋词的经历,并分享了自己对于阅读的看法。他认为书籍可以分为工具和消遣两类,而真正投入地阅读能带来意想不到的收获。通过反复研读,即使是难以理解的内容也能逐渐领悟。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  2009年1月22日 周四

      记得小时候父亲的朋友喜欢教我背唐诗宋词,每当我懵懂不知其意时他总是会告诉群我熟读唐诗三百首不会作诗也会吟。于是我背了一堆堆的唐诗宋词,当时看来除了锻炼出比较好的记忆力和炫耀的资本感觉没什么太大的效果,当然现在基本都还回老师了。

      其实以前对于看书我的态度一向很明确分为两种,一是工具 二是消遣。消遣自不用提看过就忘,用来学习的书也是抱着用时才翻查的态度平时也是翻翻就过,估计很多朋友和我一样吧:)。前些天因为工作的原因我找出翻了N遍的数字图像处理(冈萨雷斯那本很出名的)平时看时对公式之类的基本是无视pass过,但或许最近看数学公式的机会多些。欣喜的发现以往有些生涩难懂的东西这次居然有了感觉。其实读每一本书只要稍稍用点心哪怕只是多几个疑问,不经意中你就会解决它 或许是读书或是和朋友的讨论。再次翻读必然又是一种感觉,每一次的翻读就是一次温故然后知新的过程。"读书千遍,其义自见" 古人诚不欺我。

分数阶傅里叶变换(Fractional Fourier Transform, FRFT)是对传统傅里叶变换的拓展,它通过非整数阶的变换方式,能够更有效地处理非线性信号以及涉及时频局部化的问题。在信号处理领域,FRFT尤其适用于分析非平稳信号,例如在雷达、声纳和通信系统中,对线性调频(Linear Frequency Modulation, LFM)信号的分析具有显著优势。LFM信号是种频率随时间线性变化的信号,因其具有宽频带和良好的时频分辨率,被广泛应用于雷达和通信系统。FRFT能够更精准地捕捉LFM信号的时间和频率信息,相比普通傅里叶变换,其性能更为出色。 MATLAB是种强大的数值计算和科学计算工具,拥有丰富的函数库和用户友好的界面。在MATLAB中实现FRFT,通常需要编写自定函数或利用信号处理工具箱中的相关函数。例如,个名为“frft”的文件可能是用于执行分数阶傅里叶变换的MATLAB脚本或函数,并展示其在信号处理中的应用。FRFT的正确性验证通常通过对比变换前后信号的特性来完成,比如评估信号的重构质量、信噪比等。具体而言,可以通过计算原始信号与经过FRFT处理后的信号之间的相似度,或者对比LFM信号的关键参数(如初始频率、扫频率和持续时间)是否在变换后得到准确恢复。 在MATLAB代码实现中,通常包含以下步骤:首先,生成LFM信号模型,设定其初始频率、扫频率、持续时间和采样率等参数;其次,利用自定的frft函数对LFM信号进行分数阶傅里叶变换;接着,使用MATLAB的可视化工具(如plot或imagesc)展示原始信号的时域和频域表示,以及FRFT后的结果,以便直观对比;最后,通过计算均方误差、峰值信噪比等指标来评估FRFT的性能。深入理解FRFT的数学原理并结合MATLAB编程技巧,可以实现对LFM信号的有效分析和处理。这个代码示例仅展示了理论知识在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值