以下是几个RAG模型在实际项目中的应用案例:
客户服务场景
- 电商平台智能客服:某电商平台利用RAG技术来自动化回答用户的咨询问题。传统的解决方案是基于FAQ的知识图谱,而RAG技术则能够根据用户的查询实时从商品详情、用户评价等多源信息中抽取相关段落,辅助生成准确的答案.例如,当用户询问某款手机的续航能力时,RAG模型会从商品描述中检索到该手机的电池容量、续航测试数据等信息,然后结合这些信息生成一个详细且针对性强的回复,如“该手机配备了5000mAh大容量电池,根据用户实际使用情况测试,充满电后可支持连续通话20小时、在线视频播放15小时,满足日常使用需求”.这种应用显著提高了客服人员的效率和质量,减少了人工干预的需求,提升了用户体验。
医疗健康咨询
- 在线健康平台疾病咨询:一个在线健康平台采用RAG技术为用户提供疾病预防、治疗方案等方面的建议.数据源包括医学期刊、官方指南、权威医疗机构的发布内容等.当用户输入症状描述或具体问题时,RAG模型的检索模块会基于这些信息从数据源中检索相关的医学文献、指南条目等,然后生成模块整合这些信息,生成针对用户情况的个性化建议.例如,用户咨询“高血压患者如何预防中风”,RAG模型会检索到高血压与中风的相关研究、预防措施等,并生成一份包含饮食建议(如低盐饮食)、生活方式调整(如适量运动、戒烟限酒)、药物治疗注意事项等内容的详细建议,确保所提供的信息是最新的、经过验证的,提高了咨询服务的专业性和可靠性,帮助用户做出更明智的健康决策。
金融报告撰写
- 金融行业报告自动化:金融行业经常需要撰写复杂的报告,这些报告通常包含大量的数据和分析.RAG可以帮助分析师快速找到所需的财务数据和市场分析,从而加速报告的撰写过程.例如,在撰写一份关于某上市公司年度财务报告时,RAG模型会根据报告主题或关键词从历史财务报表、市场研究报告、宏观经济指标等数据源中检索相关数据,如公司的收入、利润、资产负债情况、行业市场份额等.然后生成模块结合这些数据和分析结果,生成报告内容,包括财务数据的详细解读、市场趋势分析、公司未来发展前景预测等,提升了报告的质量和制作效率,有助于分析师更快地完成任务。
企业知识问答
- 阿里云智能问答:阿里云在构建基于RAG的智能问答系统时,考虑到文档具有多层标题属性且不同标题之间存在关联性,提出了多粒度知识提取方案.按照不同标题级别对文档进行拆分,然后基于Qwen14b模型和RefGPT训练了一个面向知识提取任务的专属模型,对各个粒度的chunk进行知识提取和组合,并通过去重和降噪的过程保证知识不丢失、不冗余.最终将文档知识提取成多个事实型对话,提升检索效果,使得企业内部员工能够快速准确地获取所需的知识信息,提高工作效率。
- 哈啰出行知识问答优化:哈啰出行采用多路召回的方式优化RAG系统,主要包括向量召回和搜索召回.向量召回使用了大模型的向量和传统深度模型向量两类;搜索召回也是多链路的,包括关键词、ngram等.通过多路召回的方式,可以达到较高的召回查全率,从而提升知识问答的准确性和全面性。