让机器辨别气味:利用图神经网络预测分子的嗅觉属性

本文介绍了一种利用图神经网络(GNN)预测分子气味的深度学习方法,旨在模仿生物体的嗅觉感知。通过GNN对分子图进行操作,直接预测其气味属性,有助于发现新的合成气味剂并提升气味预测能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文 / Alexander B Wiltschko 高级研究员 Google Research

嗅觉是诸多生物体共有的一种感官,在生物体分析世界并作出相应反应方面起着至关重要的作用。对人类而言,我们的嗅觉与享用美食紧密相连,并且还能唤醒与之对应的鲜活记忆。嗅觉使我们可以感受日常生活中的各种香味,例如我们熟悉的玫瑰花香、新鲜出炉的饼干醇香,抑或是最喜欢的香水味道。虽然嗅觉很重要,但在机器学习研究中它并未像视觉与听觉那般备受关注。

人类的气味感知通过激活 400 种不同类型的嗅觉感受器 (Olfactory Receptors, OR) 来实现。嗅觉感受器位于鼻腔内名为嗅觉上皮的小块状组织中,由 100 万个嗅觉感应神经元 (Olfactory Sensory Neurons, OSN) 组成。这些 OSN 将信号发送给嗅球(olfactory bulb),然后进一步传递到大脑皮层产生嗅觉。

基于视觉和声音深度学习研究的类似进展,我们通过类比得知,即使不知道所有相关系统的复杂细节,嗅觉深度学习应该也可以直接预测出输入分子的最终感应结果。解决气味预测问题将有助于发现新的合成气味剂,从而减少取用天然产品造成的生态影响。审视生成的嗅觉模型甚至可以带来嗅觉生物学的新见解。

小气味分子是香精香料最基本的组成成分,因此也代表了最简单的气味预测问题。不过,每个分子都有多个气味描述词。例如,对于香兰素 (Vanillin)的描述词有 甜美、香草味、奶油味 和 巧克力味 等,其中的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值