文 / Google Research 及 Google Brain 团队高级研究工程师 Daniel Adiwardana 和高级研究员 Thang Luong
现代 对话代理 (Conversational Agent, 又称 chatbots 聊天机器人) 非常专业,只要用户的使用行为与预期相差不多,这类机器人的表现就会很好。
为了更好地处理各种各样的对话主题,开放域对话 (Open-Domain Dialog) 的研究团队探索出一种补充方法:尝试开发出一种不专门针对聊天、但仍然可以与用户聊任何内容的聊天机器人。这类对话代理不仅是一个吸引人的研究课题,而且还可衍生出很多有趣应用,如:可进一步提升人机互动,改进外语学习,制作有关联的交互式电影和视频游戏角色的应用。
但是,现有的开放域聊天机器人存在一个严重缺陷:它们回复的内容常常不具有实际意义。它们时常回复的话语前后不搭,或者明显缺乏常识与关于世界的基本认知。此外,这类聊天机器人经常会给出不符合当前特定语境的答复。例如,用“我不知道”这个没有针对性的答案来回复很多问题。据统计,聊天机器人比人类更频繁地给出类似的万金油回答。
我们在《迈向拟人化的开放域聊天机器人》(Towards a Human-like Open-Domain Chatbot) 一文中介绍了 Meena,这是一个包含 26 亿个参数的端到端训练的神经对话模型。我们证明,与现有的最先进 (State-Of-The-Art) 聊天机器人相比,Meena 可以进行更合理和更具体的对话。我们针对开放域聊天机器人提出一项新的人工评估指标,即合理度和具体度平均值 (Sensibleness and Specificity Average, SSA),可捕获人类对话中基本但重要的属性。值得注意的是,我们提出了一项适用于任何神经对话模型,而且与 SSA 高度相关的自动指标 “困惑度 (Perplexity)”。
迈向拟人化的开放域聊天机器人
https://arxiv.org/abs/2001.0997神经对话模型
https://arxiv.org/abs/1506.0586
Meena(左)与用户(右)的聊天对话
Meena
Meena 是一种端到端的神经对话模型,可以根据特定语境学习并做出明智回答。训练的目标是最大程度地降低困惑度,即预测下一个 token (在本例中是指对话中的下一个词) 的不确定性。Meena 的核心是 Evolved Transformer seq2seq 架构,这是一种为降低困惑度,在改进神经架构搜索时发现的 Transformer 架构。
Evolved Transformer seq2seq
https://ai.googleblog.com/2019/06/applying-automl-to-transformer.html
具体来说,Meena 拥有 1 个 Ev