文 / 软件工程师 Ji Hun Kim 和 Richard Wu,来自 Stadia
近年来,在线多人游戏的热度持续飙升,在全球范围内吸引着数不胜数的玩家。这种流行也加倍提高了对游戏设计者的要求:玩家会期望游戏在设计上足够细致和保证平衡性,毕竟,如果游戏中有某种强势套路可以胜过所有其他玩法,那这款游戏也没什么好玩的了。
为营造积极的游戏体验,游戏设计者通常会反复调整游戏中的平衡性:
通过测试用户成千上万次的游戏会话进行压力测试
整合反馈,重新设计游戏
重复步骤 1 和 2,直到游戏测试人员和设计者都满意为止
这个过程不仅耗时,而且明显存在不足:游戏越复杂,细微的缺陷就越容易被忽视。当游戏中有多个可供扮演的角色和大量相互关联的技能时,要达到平衡便更为困难。
今天,我们将介绍一种机器学习 (ML) 方法:训练模型充当游戏测试人员来调整游戏平衡,并在数字卡牌游戏原型 Chimera 上演示这种方法。先前,我们也用相同的测试平台演示了 ML 生成的艺术。这种基于 ML 的游戏测试方法使用训练好的智能体 (Agent) 通过数百万次模拟收集数据,让游戏设计者可以更高效地将游戏打造得更有趣、更平衡的同时也符合设计预期。
Chimera
https://www.youtube.com/watch?v=hMWjerCqRFA&t=239s
Chimera
我们开发的 Chimera 是一个游戏原型,在开发过程中依赖了大量的机器学习。对于游戏本身,我们有针对性地设计了规则,扩大了可能性空间,使得很难通过传统的人工构建的 AI 来进行游戏。
Chimera 的玩法围绕奇美拉(Chimera,神话生物)展开,这些生物混合体将由玩家强化和进化。游戏的目标是打败对手的奇美拉。游戏设计中的关键点如下:
玩家可以:
-
操控生物