机器学习如何优化策略游戏

本文介绍了如何使用机器学习(ML)模型优化策略游戏的平衡性,以数字卡牌游戏Chimera为例。通过训练智能体进行数百万次模拟,收集数据并调整游戏规则,如减少奇美拉进化所需的链接能量,增加霸王龙的冷却期等,从而实现游戏的改进和平衡。这种方法大大提高了游戏设计的效率和质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文 / 软件工程师 Ji Hun Kim 和 Richard Wu,来自 Stadia 

近年来,在线多人游戏的热度持续飙升,在全球范围内吸引着数不胜数的玩家。这种流行也加倍提高了对游戏设计者的要求:玩家会期望游戏在设计上足够细致和保证平衡性,毕竟,如果游戏中有某种强势套路可以胜过所有其他玩法,那这款游戏也没什么好玩的了。

为营造积极的游戏体验,游戏设计者通常会反复调整游戏中的平衡性:

  1. 通过测试用户成千上万次的游戏会话进行压力测试

  2. 整合反馈,重新设计游戏

  3. 重复步骤 1 和 2,直到游戏测试人员和设计者都满意为止

这个过程不仅耗时,而且明显存在不足:游戏越复杂,细微的缺陷就越容易被忽视。当游戏中有多个可供扮演的角色和大量相互关联的技能时,要达到平衡便更为困难。

今天,我们将介绍一种机器学习 (ML) 方法:训练模型充当游戏测试人员来调整游戏平衡,并在数字卡牌游戏原型 Chimera 上演示这种方法。先前,我们也用相同的测试平台演示了 ML 生成的艺术。这种基于 ML 的游戏测试方法使用训练好的智能体 (Agent) 通过数百万次模拟收集数据,让游戏设计者可以更高效地将游戏打造得更有趣、更平衡的同时也符合设计预期。

  • Chimera
    https://www.youtube.com/watch?v=hMWjerCqRFA&t=239s

Chimera

我们开发的 Chimera 是一个游戏原型,在开发过程中依赖了大量的机器学习。对于游戏本身,我们有针对性地设计了规则,扩大了可能性空间,使得很难通过传统的人工构建的 AI 来进行游戏。

Chimera 的玩法围绕奇美拉(Chimera,神话生物)展开,这些生物混合体将由玩家强化和进化。游戏的目标是打败对手的奇美拉。游戏设计中的关键点如下:

  • 玩家可以:

    • 操控生物

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值