文 / Google Expander 团队高级职员兼研究科学家 Sujith Ravi
成功的深度学习模型往往需要大量的计算资源、内存和动力来训练和运行,一旦您想让它们能在移动设备和物联网设备上表现良好,往往就会碰壁了。通过移动端机器学习,您可以直接在设备上运行推理,无论连接状况如何,都可以保护数据隐私,不受任何访问权限的制约。移动端的 ML 系统,例如 MobileNets 和 ProjectionNets,通过优化模型效率来解决移动设备上的资源瓶颈。但是,如果您想为您的个人移动应用程序培训自己定制的设备型号,那该怎么办呢?
在 Google I / O 开发者年会上,我们发布了 ML Kit 工具包,让所有移动开发人员都可以使用机器学习。由我们的研究团队开发的 “Learn2Compress” 技术提供了自动模型压缩服务,这是 ML 工具包的核心功能之一,也将很快上线。 Learn2Compress 可以在 TensorFlow Lite 中实现自定义的移动端深度学习模型,可在移动设备上高效运行,开发人员无需担心内存和速度优化问题。我们很高兴能够很快在 ML Kit 工具包中使用针对图像分类的 Learn2Compress。 Learn2Compress 最初将面向少数开发人员开放,并在未来几个月内提供给更广泛的受众。 如果您有兴趣使用此功能来构建自己的模型,可以在此处注册。
注:此处链接
https://docs.google.com/forms/d/e/1FAIpQLSd7Uzx6eepXeF5osByifFsBT_L3BJOymIEjG9uz1wa51Fl9dA/viewform
工作原理
Learn2Compress 融合了之前研究工作中介绍的学习框架,如 ProjectionNet,并结合了几种最先进的技术来压缩神经网络模型。 它将用户提供的大型