PAT 乙级 1045 快速排序 (25 分)
原题链接:https://pintia.cn/problem-sets/994805260223102976/problems/994805278589960192
著名的快速排序算法里有一个经典的划分过程:我们通常采用某种方法取一个元素作为主元,通过交换,把比主元小的元素放到它的左边,比主元大的元素放到它的右边。 给定划分后的 N 个互不相同的正整数的排列,请问有多少个元素可能是划分前选取的主元?
例如给定 N = 5 N = 5 N=5, 排列是1、3、2、4、5。则:
1 的左边没有元素,右边的元素都比它大,所以它可能是主元;
尽管 3 的左边元素都比它小,但其右边的 2 比它小,所以它不能是主元;
尽管 2 的右边元素都比它大,但其左边的 3 比它大,所以它不能是主元;
类似原因,4 和 5 都可能是主元。
因此,有 3 个元素可能是主元。
输入格式:
输入在第 1 行中给出一个正整数 N(≤10^5);第 2 行是空格分隔的 N 个不同的正整数,每个数不超过 10^9。
输出格式:
在第 1 行中输出有可能是主元的元素个数;在第 2 行中按递增顺序输出这些元素,其间以 1 个空格分隔,行首尾不得有多余空格。
输入样例:
5
1 3 2 4 5
输出样例:
3
1 4 5
思路:此题做简单的就是暴力法求解(代码中**QuickSort_Num()**函数),不过会运行超时.如下图:
之后,就换了一种做法,先用sort排序,然后判断排序后的数组哪些元素的位置没有发生变化,而且此元素大于其左边的元素小于其右边的元素,所以修改后的代码如下:
/*
pat乙级1045:快速排序
*/
#include <bits/stdc++.h>
using namespace std;
//int QuickSort_Num(int a[],int b[],int n); //查找一个快速排序后的序列中可能是主元的元素个数
const int maxn = 1e5+10;
int *a = new int[maxn];
int *b = new int[maxn];
int *c = new int[maxn];
int main()
{
int n;
int i;
while(scanf("%d",&n)==1)
{
for(i=0;i<n;++i)
{
scanf("%d",&a[i]);
b[i] = a[i];
}
int ret = 0;
int max = 0;
memset(c,0,sizeof(c));
//排序
sort(a,a+n);
for(i=0;i<n;++i)
{
//位置没有发生变化,且该元素大于左边元素小于右边元素
if(a[i]==b[i] && b[i]>max)
{
c[ret++] = a[i];
}
//更新max
if(b[i]>max)
max = b[i];
}
printf("%d\n",ret);
for(i=0;i<ret;++i)
{
printf("%d",c[i]);
if(i<ret-1)
printf(" ");
}
printf("\n");
}
/*释放内存*/
delete(a);
delete(b);
delete(c);
return 0;
}
#if 0
//暴力求解法:运行超时
int QuickSort_Num(int a[],int b[],int n)
{
int res = 0;
int i,j,k;
bool fg1,fg2;
for(i=0,k=0;i<n;i++)
{
fg1 = true;
fg2 = true;
for(j=0;j<i;++j)
{
if(a[j]>a[i])
{
fg1 = false;
break;
}
}
if(fg1)
{
for(j=i+1;j<n;++j)
{
if(a[j]<a[i])
{
fg2 = false;
break;
}
}
}
if(fg1 && fg2)
{
//printf("%d-",a[i]);
b[k++] = a[i];
res++;
}
}
return res;
}
#endif