2013年总结

       作者:gooogleman         日期:2014.02.10


        2013年是艰难的一年,工作的繁杂让我喘不过去来;结婚后生活琐事也越来越多,责任越来越大;最为严峻的是工作性质的转型,以前单纯做技术会做的比较自由,做完大把时间上论坛灌水;2013年承担两个项目的项目经理,除了日常项目进度管控,沟通协调,其中一个项目还要做主力开发人员,真是苦不堪言。现在2014年2月份了,但是按照惯例,补上2013年的年终总结。

1、2013年第一季度,几乎没有任何征兆的情况下调入另外一个部门,在这种情势下,由不得自己愿不愿意,如果想留下,那就必须服从安排。调入到新部门开始倒也是自由快活,一些老部门的产品不需要我去维护更新了。于是就捣鼓着S5PV210的android了,捣鼓了一阵子就突发奇想的想做S5PV210 android+wince 双系统的实现了,于是就开始修改S5PV210 uboot,经过1~4月份的修改测试,终于完成了大部分的功能,没想到这个无心插柳居然在后面项目上派上了大用场。

2、第二季度又晃荡了一两个月,没想到五月份的时候新部门突然安排了一个硬件大型项目下来,四处也找不到项目经理,于是我这个工作了几年的老人就相当于被迫担任这个项目经理了,开始首先是争取资源,这项目包含硬件,wince 驱动,wince 应用等技术,还需要结构以及测试组,产品工程组的配合。更奇葩的是,我要担任wince 驱动的大量移植开发,不过没办法,如果还想留在公司,那么就必须接受安排。然后马上向公司要人组建项目团队,需要找原理图PCB设计工程师,需要找一个助手,然后是测试人员,产品工程师。团队组建完毕开始写项目前期文件,开始熟悉项目流程,那个开始那个苦啊,写的是苦水外溢,极为不适应,写了半个多月提交上去审查,然后又被打回来反复修改,一个月多后终于立项通过了。通过后感觉这个项目流程真好,以前做项目经理都是乱作的,写一个大概的开发计划就可以了,但是执行的细节和步骤却是很不可控的,这次的项目策划写下来,对一个项目的过程预测非常的准确,项目风险大大的降低。花了一个月多,做出了第一批样机。

3、第三季度 调试第一批样机,wince 驱动,wince 应用,硬件调试,忙的不知道东西南北,更加郁闷的是,这时候又一个外包项目由我全程跟进,相当于一个纯项目经理角色,然后两边照顾,除了自有产品开发调试,管理,外包的项目的外观,结构,以及一些后期的驱动调试都要搞,真是苦逼人士啊,但是这么忙后面居然评定时候没达到优的级别,让我郁闷了好一阵子,不过这也锻炼了我的心脏,关于为啥会这样,我会在2014年计划的时候再说了。

————要上班去了,先写到这里,看今晚再来写完剩余的部分。


————续@2014.02.13 22:24 还在编译Sate210-F的内核,于是来写写这篇总结。

4、第四季度很忙,首次担任项目经理的项目要进行研发样机测试,评审了,公司流程变的异常的有步骤,但是文档多的惊人,于是就先决定解决问题再补文档,问题解决的差不多了,但是已经到了研发样机测试时间,要提交给测试组了,但是我想把问题解决掉再提交,O(∩_∩)O~很明显,自己都能看出有问题,决不能提交这种有问题的东西出去,果然是一个够纯洁的工程师,不过研发总监可不是这么想的,他说可以提交测试,但是要在测试结束之前解决掉问题——果然想的好啊,这样一来不耽误测试,并且给了我们很大压力去解决这个问题。不过不得不承认,研发总监想的是比较到位的,决不能有点瑕疵就不测试,否则会影响进度。还有更重要的事情也再做这,组织一些网友们进行的S5pv210 DIY 硬件开发板以及学习uboot,linux,android活动也在进行中,于是晚上回到家都是在修改程序啊,测试啊,组装LCD和电容屏幕啊,PCB一改再改,终于做出来来了,不过年前只剩下八个首次工程样机,基本没啥问题了,于是就卖给客户去使用了,剩余两个自己留着不卖,继续调试IIS1 S5pv210 WM8960 wince6.0 /android4.0 驱动,VGA等也陆续完善了。


总结:做了很多事情,但是居然说不出来,最大的感触是觉得自己的力量很渺小,如果不会整合团队的力量,那么要想做一个盈利的企业很困难,很困难!先去调试Sate210-F 学习开发板先了,有空再写写职场得失的经验吧。


内容概要:本文详细介绍了一个基于Python实现的SO-ESN项目,即利用蛇群优化算法(SO)优化回声状态网络(ESN)进行多输入单输出回归预测的完整实例。文章涵盖了项目背景、目标、挑战与解决方案,并系统阐述了模型架构,包括数据预处理、特征降维、ESN网络结构、SO优化算法集成、评估可视化及模型解释性等模块。通过将SO算法与ESN深度融合,实现了对ESN关键参数的智能优化,显著提升了模型的预测精度、鲁棒性、泛化能力与收敛速度。文中还提供了核心代码示例,涵盖数据处理、PCA降维、ESN定义、SO算法实现、模型训练预测、结果评估与SHAP解释性分析,展示了从建模到部署的全流程。; 适合人群:具备一定Python编程和机器学习基础,熟悉神经网络与优化算法的研发人员、高校学生及科研工作者,尤其适合从事时间序列预测、智能优化与回归建模相关工作的技术人员; 使用场景及目标:①应用于金融、工业、交通、能源等领域的多输入单输出时序预测任务;②研究智能优化算法(如SO)与神经网络(如ESN)的融合机制;③实现高精度、自动化、可解释的回归建模;④降低人工调参成本,提升模型稳定性与泛化性能; 阅读建议:此资源以实战项目为导向,建议读者结合代码逐步复现各模块流程,重点关注SO算法与ESN的集成逻辑、参数优化机制及模型评估与解释方法,建议在实际数据集上进行调参与验证,以深入掌握其应用技巧与优化策略。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值