高效计算(a^0+a^1+a^2+...+a^n) % m

看到群里有人出了一道ACM题,要求计算(a^0 + a^1 + a^2 + ... + a^n) % m的值
其中三个数的取值范围为  0 <= a <= 10^16, 0 <= n <= 10^9, 1 <= m <= 10^9

 

看到这样一道题,首先联想到计算(a^b)%m,后者可以通过分解幂来计算
那前者能不能通过同样的方法来计算呢

 

看下面这个分解过程:

FX( a, n, m ) 为公式一

FXMultiplication( a, h, m ) 为公式二,其中FXMultiplication即要返回公式的值,又要返回 a^(2h)的值,方便继续计算

 

实现代码如下:

其实上面的代码中时间复杂度还有可优化的地方,您看出来了吗?

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值