拉普拉斯噪声满足ε-差分隐私的定义
差分隐私的定义如下:给定一个兄弟数据集D和D’,他们两者之间至多相差一条数据。然后给定一个映射函数f:D→Rdf:D\rightarrow R^df:D→Rd。它表示的是数据集D到一个d维空间的映射关系。接着,我们在所得到的的函数f(D)=(x1,x2,...,xd)Tf(D)=(x_1,x_2,...,x_d)^Tf(D)=(x1,x2,...,xd)T上添加拉普拉斯噪声,得到一个输出函...
原创
2019-07-16 16:10:05 ·
5609 阅读 ·
2 评论