图论2-SAT算法详解

图论2-SAT算法详解


今天我们来介绍一个我个人认为最难的算法,这是为什么呢?肯定会有许多dalao说,不就一个2-SAT,我两分钟就A掉了。然而2-SAT的细节非常的多,稍不注意就会写错,而且测试困难,造数据后手算实在麻烦,综合上述内容,这个算法非常困难

原理

主要是这样的,这个算法是为了应对一些这样的条件:x1x2中至少有一个成立。我们可以把每个条件拆成两个点,一个点代表它成立了,而另一个点代表它不成立。这样,如果一共有n个命题,那么就会产生2n个点。我们通过条件,若x1不成立,则我们可以推出x2必然成立,于是我们每次通过条件连有向边,相当于推导出的意思

然后2-SAT每次选择一个未被考虑到的命题,分别尝试它为真与假的情况,如果都发生矛盾,则原问题无解,即使改变过去取值也不行

代码

细节看似很少,实则巨多

#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<vector>
#define maxn 1005
using namespace std;
int n,m,a1,a2,c1,c2,S[2*maxn],c=0;
vector<int> geo[2*maxn];
bool vis[2*maxn];
bool DFS(int x){
    if(vis[x])return true;
    if(vis[x^1])return false;
    vis[x]=1;
    S[c++]=x;
    for(int i=0;i<geo[x].size();i++){
        int op=geo[x][i];
        if(!DFS(op))return false;
    }
    return true;
}
bool Bi_SAT(){
    for(int i=0;i<2*n;i+=2)
        if(!vis[i]&&!vis[i+1]){
            c=0;
            if(!DFS(i)){
                while(c>0){
                    vis[S[--c]]=0;
                }
                if(!DFS(i+1))
                    return false;
            }
        }
    return true;
}
void recover(){
    for(int i=0;i<2*n;i++)
        vis[i]=0;
    for(int i=0;i<2*n;i++)
        geo[i].clear();
    return;
}
int main(){
    /*freopen("input.txt","r",stdin);
    freopen("output.txt","w",stdout);*/
    while(scanf("%d%d",&n,&m)==2){
        for(int i=0;i<m;i++){
            scanf("%d%d%d%d",&a1,&a2,&c1,&c2);
            geo[(a1<<1)+c1].push_back((a2<<1)+(c2^1));
            geo[(a2<<1)+c2].push_back((a1<<1)+(c1^1));
        }
        if(Bi_SAT())printf("YES\n");
        else printf("NO\n");
        recover();
    }
    return 0;
}

这大概是一道名副其实的板子了

细节

hehe

1.拆分后的点一定要用偶数作为编号起始,否则DFS中异或时会出错

2.DFS中只要有一个后继节点不成立,则返回false,这是因为后继节点们相当于可以被推导出来的条件,每一个都必须成立,原节点才有可能成立

3.DFS开头要判重

4.清空S数组时要注意下标

5.连接有向边时一定要注意,同时注意各个节点编号

例题

比如

BZOJ 1823: [JSOI2010]满汉全席

有时间链上题解

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Goseqh/article/details/60034620
文章标签: 2-SAT 图论
上一篇多字符串存储的Trie树详解
下一篇Manacher算法详解
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭