贪心算法和动态规划算法是两种常见的算法思想。贪心算法是一种基于贪心策略进行求解的算法,每一步选择当前最优的解决方案,最终得到全局最优解。而动态规划算法则是将问题分解为更小的子问题,通过求解子问题来推导出整个问题的解。
贪心动态规划算法结合了贪心算法和动态规划算法的思想。贪心动态规划算法通常分为两种:一种是在贪心算法的基础上,加入一定的动态规划思想,用于解决一些特定问题,如区间调度问题;另一种是在动态规划的基础上,加入贪心思想,用于优化一些动态规划问题的时间或空间复杂度,如背包问题。
下面以两个例子分别说明贪心动态规划算法的应用。
- 区间调度问题
给定 n 个区间 [(s1, e1), (s2, e2), …, (sn, en)],选出尽可能多的区间,使得它们两两不重叠(端点可以重叠),并输出选出的区间。
贪心动态规划算法的思路是:首先按照区间的结束时间排序,然后依次考虑每个区间,若当前区间的开始时间晚于前一个区间的结束时间,则选择该区间。因为选择结束时间早的区间会更有可能腾出更多的时间,供后续区间使用。
- 背包问题
有一个背包可以容纳重量为 W 的物品,现有 n 种物品,第 i 种物品的重量为 wi,价值为 vi。选择哪些物品放入背包,可以使得背包中物品的总价值最大。
动态规划算法可以解决背包问题,但是它需要维护一个二维数组,用于存储子问题的解。如果物品种类很多,二维数组的空间复杂度会很高。
贪心动态规划算法的思路是:将物品按照单位重量的价值从大到小排序,依次考虑每个物品,若它可以放入背包,则将它放入。这样做的原因是,如果按照单位重量的价值排序,每次选择价值最大的物品放入背包,可以保证每次选择的物品是最优的,因为它具有最大的单位重量价值。
以上是贪心动态规划算法的两个应用例子。需要注意的是,贪心动态规划算法并不是所有问题的最优解
Java实现
代码中的 intervalSchedule
方法接收一个二维数组 intervals
,其中每个一维数组表示一个区间,包含两个元素,分别表示区间的开始时间和结束时间。方法首先按照区间的结束时间对所有区间进行排序,然后依次遍历所有区间。如果当前区间的开始时间晚于等于前一个区间的结束时间,说明这两个区间重叠,不能选中当前区间。否则,可以选中当前区间,并更新计数器和当前区间的结束时间。最后返回计数器的值,即选中的区间数量。
需要注意的是,该方法假设输入的区间已经按照结束时间排序,并且没有重叠的区间具有相同的结束时间。如果不符合这两个条件,需要进行相应的处理。
import java.util.Arrays;
import java.util.Comparator;
public class IntervalScheduling {
public static void main(String[] args) {
int[][] intervals = {{1, 4}, {3, 5}, {0, 6}, {5, 7}, {3, 8}, {5, 9},
{6, 10}, {8, 11}, {8, 12}, {2, 13}, {12, 14}};
int res = intervalSchedule(intervals);
System.out.println(res);
}
public static int intervalSchedule(int[][] intervals) {
Arrays.sort(intervals, new Comparator<int[]>() {
@Override
public int compare(int[] o1, int[] o2) {
return o1[1] - o2[1];
}
});
int count = 1, end = intervals[0][1];
for (int i = 1; i < intervals.length; i++) {
if (intervals[i][0] >= end) {
count++;
end = intervals[i][1];
}
}
return count;
}
}