poj 1733 Parity game

题目链接:http://poj.org/problem?id=1733


题目大意:

一个长度为n(n<=10^9)的01序列.

有m个条件(a,b,res),表示[a,b]之间1的个数的奇偶性,res= {even为偶数,odd为奇数}.

判断从第1个条件起,第一个错误的位置(从0开始算).


题目思路:

由于是闭区间,所以我们可以把其改为半开半闭的区间,如(a-1,b]或者[a,b+1).(以下讲解以(a-1,b]为例子)

假设条件  a,b,res

如果我们知道 (x, a-1]的奇偶性和(y, b]的奇偶性.

我们再设奇为1,偶为0.

当x==y时,如果(x,a-1]^res==(y,b],那么该条件正确,否则错误.(^表示异或)

当x!=y时(假设x<y),那么我们无法判断这个条件的正确性,但是我们可以推出(x,y]的奇偶性,(x,y]=(x,a-1]^(y,b]^res.

因为(x,a-1]^res=(x,b].

所以(x,a-1]^(y,b]^res=(y,b]^(x,b]=(x,y].

x>y时类似.



代码:

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <ctype.h>
#include <math.h>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;

#define ll long long
#define ls rt<<1
#define rs ls|1
#define lson l,mid,ls
#define rson mid+1,r,rs
#define middle (l+r)>>1
#define eps (1e-8)
#define type int
#define clr_all(x,c) memset(x,c,sizeof(x))
#define clr(x,c,n) memset(x,c,sizeof(x[0])*(n+1))
#define MOD 1000000009
#define INF 0x3f3f3f3f
#define pi acos(-1.0)
#define _max(x,y) (((x)>(y))? (x):(y))
#define _min(x,y) (((x)<(y))? (x):(y))
#define _abs(x) ((x)<0? (-(x)):(x))
#define getmin(x,y) (x= (x<0 || (y)<x)? (y):x)
#define getmax(x,y) (x= ((y)>x)? (y):x)
template <class T> void _swap(T &x,T &y){T t=x;x=y;y=t;}
int TS,cas=1;
const int M=5001+5;
int n,m;
int fa[M<<2],val[M<<2];
map<int,int>mp;
int hash[M<<1],tot;
char op[5];
struct node{
	int a,b,f;
	void read(){
		scanf("%d%d%s",&a,&b,op);
		f=(op[0]=='o');
		hash[++tot]=a;
		hash[++tot]=b;
	}
}p[M];

int find(int x){
	if(x==fa[x]) return x;
	int rt=find(fa[x]);
	val[x]^=val[fa[x]];
	return fa[x]=rt;
}

void run(){
    int i,j;
	scanf("%d",&m);
	for(i=1,tot=0;i<=m;i++) p[i].read();
	sort(hash,hash+tot);
	tot=unique(hash+1,hash+tot+1)-(hash+1);
	for(mp[hash[1]]=1,i=2;i<=tot;i++)
		mp[hash[i]]=mp[hash[i-1]]+((hash[i]>hash[i-1]+1)? 2:1);
	for(i=0;i<=mp[hash[tot]];i++) fa[i]=i;
	for(i=1;i<=m;i++){
		int a=mp[p[i].a]-1,b=mp[p[i].b];
		int af=find(a),bf=find(b);
		if(af==bf){if((val[a]^p[i].f)!=val[b]) break;}
		else if(af<bf) fa[bf]=af,val[bf]=val[b]^val[a]^p[i].f;
		else fa[af]=bf,val[af]=val[b]^val[a]^p[i].f;
	}
	printf("%d\n",i-1);
}

void preSof(){
}

int main(){
    //freopen("input.txt","r",stdin);
    //freopen("output.txt","w",stdout);
    preSof();
    //run();
    while(~scanf("%d",&n)) run();
    //for(scanf("%d",&TS);cas<=TS;cas++) run();
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值