分布式
文章平均质量分 87
goTsHgo
这个作者很懒,什么都没留下…
展开
-
Gossip 协议 简介
Gossip协议是一种去中心化的分布式通信协议。它模仿了谣言传播的方式,通过节点之间的相互“聊天”(即信息交换),将信息逐步扩散到整个网络中。该协议不需要一个中心节点来协调信息传播,因此具备很好的容错性和可扩展性。状态同步:节点之间保持状态一致。故障检测:识别失效节点。负载均衡:均匀地分配工作负载。原创 2024-10-29 14:46:44 · 817 阅读 · 0 评论 -
MapReduce 与 Spark 的shuffle对比
MapReduce 和 Spark 的 shuffle 都是分布式计算框架中用于数据重新分配的操作,但两者在实现和优化上有一些显著差异。以下从底层实现、数据存储、执行流程和性能优化等方面详细对比 MapReduce 和 Spark 的 shuffle。原创 2024-10-25 17:20:04 · 780 阅读 · 0 评论 -
Spark的Torrent Broadcast 详解
Spark的Torrent Broadcast是为了优化大数据分发而设计的一种高效广播机制。它采用类似BitTorrent的分布式数据传播方式,通过分块传输和逐步扩散,将广播数据分发到各个工作节点。相比传统的广播模式,Torrent Broadcast能够更好地利用网络带宽,并提供更好的容错性和扩展性。原创 2024-10-22 14:24:49 · 711 阅读 · 0 评论 -
Spark 的 Http Broadcast 和 Torrent Broadcast 广播实现类的对比
特性实现方式中央化的 HTTP 服务器传输分布式数据块传输,链式传播效率随着集群规模增大,效率迅速下降高效并发,适合大规模集群可扩展性可扩展性差可扩展性强,适合大型集群网络负载网络负载集中在驱动节点网络负载分散在多个节点之间容错性容错性较差,驱动程序故障会导致广播失败容错性强,部分节点故障不会影响整体传播驱动程序负担驱动程序负载较高驱动程序负担轻,依赖分布式节点传播适用场景小规模集群和小数据集大规模集群和频繁的大数据广播Spark 默认方式Spark 1.5 之前Spark 1.5 之后。原创 2024-10-22 11:07:11 · 923 阅读 · 0 评论 -
Spark 广播变量的数据分发 的完整操作流程
创建广播变量:驱动程序创建广播变量,并对数据进行序列化。分片与分发:广播数据通过 Torrent Broadcast 被分片,并通过驱动程序和其他执行器之间的多级传播分发给集群中的所有执行器。数据接收与缓存:每个执行器首次使用广播变量时,从驱动程序或其他执行器获取数据,并将其缓存到内存或磁盘。任务使用广播数据:执行器上的任务通过本地访问缓存的广播变量,减少了网络传输的开销。清理:当广播变量不再需要时,用户可以显式调用,或者依赖 Spark 的垃圾回收机制清理广播变量。原创 2024-10-22 10:44:13 · 1039 阅读 · 0 评论 -
Spark 广播变量(Broadcast Variable)原理及源码分析
Spark 广播变量通过序列化、分块、缓存和分层传播的机制,大大减少了任务之间的数据传输开销,提高了性能。原创 2024-10-21 16:47:51 · 917 阅读 · 0 评论 -
Spark动态资源释放机制 详解
Apache Spark 是一个分布式数据处理框架,其动态资源分配(或称为动态资源释放)机制,是为了更高效地利用集群资源,尤其是在执行具有不同工作负载的作业时。Spark 的动态资源释放机制允许它根据作业的需求自动分配和释放集群资源,从而提高资源利用率,降低空闲资源占用时间。动态资源分配(Dynamic Resource Allocation, DRA)机制主要解决以下问题: Spark 通过动态调整**执行器(Executor)**的数量,根据作业的负载来增加或减少资源。核心目标是:Spar原创 2024-10-21 13:59:41 · 1036 阅读 · 0 评论 -
Maxwell 的容错和恢复机制 详解
Maxwell 的容错和恢复机制依赖于对 binlog 位置的精确管理、对 Kafka 消息的幂等性处理、以及自动重试和死信队列的结合,确保了其在大规模数据处理场景中的高可用性。原创 2024-10-21 10:40:07 · 776 阅读 · 0 评论 -
HiveOnSpark环境下,Spark 挂了问题排查思路
当 Spark 挂掉时,分析错误的关键在于查看 Hive 和 Spark 相关的日志。通过 Hive 查询日志、Spark Driver 和 Executor 的日志,结合 YARN Web UI 或 Spark History Server,可以逐步排查出问题的根源。常见的原因包括内存不足、数据倾斜、Shuffle 阶段问题和资源不足等。根据日志中的错误提示,合理调整 Spark 的配置或优化查询逻辑,通常可以解决这些问题。原创 2024-10-18 17:27:47 · 1052 阅读 · 0 评论 -
HBase 切片原理 详解
HBase 的切片机制基于行键范围的水平分割,通过自动触发切片操作,将超大 Region 拆分为更小的子 Region。这个过程涉及对行键范围的划分、HDFS 文件的共享和管理,以及集群中 RegionServer 的负载均衡。切片不仅提高了 HBase 的存储扩展能力,还保证了数据处理的并发性和系统的整体性能。原创 2024-10-18 14:25:33 · 909 阅读 · 0 评论 -
spark统一内存模型 详解
Spark 的统一内存模型通过动态调整执行内存和存储内存的划分,极大地提高了内存资源的利用率。通过引入堆外内存支持、灵活的内存共享机制以及动态扩展策略,Spark 能够在不同类型的任务(如批处理、流处理、机器学习)之间高效地分配和管理内存资源。我们从底层原理和源代码的角度详细解析了 Spark 内存管理的工作机制,了解了如何动态管理和调度内存,以及内存的申请、释放与回收机制。掌握这些底层实现细节有助于在实际应用中优化 Spark 性能,提升资源利用率。原创 2024-10-18 12:07:32 · 1321 阅读 · 0 评论 -
Maxwell 底层原理 详解
Maxwell 是一个轻量级的 MySQL binlog 解析工具,它通过连接 MySQL 并获取 binlog 数据,利用解析这些二进制日志,将其转化为易于处理的RowMap对象,并通过Producer发送到外部系统。Maxwell 提供了灵活的输出方式和良好的容错机制,适用于实时数据同步和流式数据处理场景。原创 2024-10-18 09:46:51 · 817 阅读 · 0 评论 -
flume 负载均衡 详解
Flume 的负载均衡机制通过多种方式实现,包括在 Sink 层的负载均衡(如 Round Robin、Random 策略)、故障转移模式(Failover)以及多代理之间的数据传输。负载均衡的底层实现依赖于 Sink Processor 和 Selector 的逻辑,通过源代码可以看到 Flume 的负载均衡机制主要集中在 Sink 选择和切换上。原创 2024-10-18 09:06:25 · 1119 阅读 · 0 评论 -
YARN调度原理详解
YARN(Yet Another Resource Negotiator)是 Hadoop 集群的资源管理和作业调度框架,它的设计旨在更好地管理和调度 Hadoop 集群中的资源。YARN 解决了传统 Hadoop MapReduce 中资源管理与作业调度紧耦合的问题,使得不同类型的计算任务可以在 Hadoop 集群上共存并高效地利用资源。原创 2024-10-12 15:46:02 · 932 阅读 · 0 评论 -
FlinkSQL中 的 双流JOIN
Flink SQL 中的流与流JOIN是基于窗口和状态管理的复杂操作。通过维护两个流的键控状态,并结合事件时间和水印机制,Flink 可以处理无界数据流中的JOIN操作。底层通过窗口机制、状态存储以及异步事件驱动模型来处理流数据的匹配和关联。在实现中,状态的管理和清理、水印驱动的窗口触发、以及事件时间处理是核心所在。原创 2024-10-11 16:30:56 · 922 阅读 · 0 评论 -
Flink SQL 底层封装的原理
Flink SQL 底层基于 Apache Calcite 实现了 SQL 解析和优化,并通过 Flink 的自定义规则扩展,支持流数据的查询处理。整个过程从 SQL 解析、逻辑计划生成与优化,到物理计划生成,再到最终的任务执行,都是高度模块化的。解析 SQL:使用 Calcite 将 SQL 语句转换为关系代数表达式。优化逻辑计划:通过 Flink 特定的优化规则对逻辑计划进行优化。生成物理计划:将优化后的逻辑计划转换为 Flink 的 DataStream API。执行任务。原创 2024-10-10 17:23:58 · 1469 阅读 · 0 评论 -
MySQL中的 Write-Ahead Log 详解
WAL 通过将数据修改先记录到日志,再将日志写入磁盘,确保了数据库在崩溃时能够恢复到一致状态。MySQL InnoDB 引擎的 WAL 机制依赖于重做日志的管理和事务的提交策略,通过日志优先的方式实现数据持久性。在底层实现中,原创 2024-10-09 15:40:02 · 1155 阅读 · 0 评论 -
HBase中的Write-Ahead Log 详解
HBase 的 WAL 机制是保证数据持久性和系统容错能力的重要组件。通过先写 WAL 再写 MemStore,HBase 确保了系统的高可靠性和一致性。底层的。原创 2024-10-09 15:32:16 · 1378 阅读 · 0 评论 -
Roaring Bitmap 详解
Roaring Bitmap 是一种高效且灵活的位图压缩数据结构,通过分片和按需选择不同的容器类型,Roaring Bitmap 能够在处理稀疏和稠密数据时都提供良好的空间和时间性能。在实际应用中,Roaring Bitmap 被广泛用于处理大规模的集合运算,例如在分析系统、数据库和搜索引擎中进行快速去重、过滤等操作。原创 2024-10-08 10:10:25 · 898 阅读 · 0 评论 -
Kafka 动态分区详解
Kafka 动态分区的实现依赖于控制器和 ZooKeeper/KRaft 的元数据更新机制。在分区增加的过程中,控制器负责管理分区的扩展,生产者的分区器会根据新的分区数重新计算分区,消费者则需要进行再均衡以处理新的分区。虽然动态分区提供了扩展 Kafka 吞吐量的能力,但它也带来了一些潜在的问题,特别是消息顺序性和消费者再均衡带来的性能影响。因此,在实际使用过程中,需要根据业务场景合理地增加分区,同时评估分区扩展带来的副作用。原创 2024-10-08 08:43:42 · 1131 阅读 · 0 评论 -
HBase 的 MemStore 详解
MemStore 是 HBase 的内存存储区域,它是一个负责缓存数据写入操作的组件。每当有写操作(如Put或Delete)发生时,数据会首先被写入到 MemStore 中,而不是直接写入磁盘。MemStore 类似于数据库中的缓冲区,主要用于提升写操作的性能。当 MemStore 达到一定的容量时,数据会被刷新(flush)到磁盘上,形成 HFile 文件存储在 HDFS 中。HBase 中的 MemStore 是一个核心的缓存机制,它通过缓存写操作来提升写性能,并在合适的时机将数据刷写到磁盘。原创 2024-09-30 16:44:12 · 1244 阅读 · 0 评论 -
HBase 的二级索引和配置实现
HBase 原生不支持二级索引,但通过倒排索引、协处理器或者借助 Apache Phoenix,可以实现二级索引。不同的实现方式各有优缺点,适合不同的业务场景。倒排索引实现简单,但需要额外的存储空间和更新开销;协处理器提供了更加灵活和高效的服务器端解决方案,但需要一定的开发和维护成本;而 Phoenix 则提供了简单的 SQL 接口,适合轻量级开发场景。通过合理设计和优化二级索引,可以显著提升 HBase 的查询效率,满足多维度数据检索的需求。原创 2024-09-30 16:26:27 · 1281 阅读 · 0 评论 -
HBase 性能优化 详解
在深入讨论优化策略之前,先简单回顾 HBase 的核心架构和工作原理。想要详细了解可以看我的HBase架构介绍。1.1 HBase 架构HMaster:负责元数据管理和 Region 的分配、迁移等操作。:负责数据的读写,管理多个 Region,存储实际的数据。ZooKeeper:作为分布式协调服务,管理集群状态和协同操作。HBase 通过分区(Region)存储数据,每个 Region 对应一定范围的 Row Key。当数据量超过设定的阈值时,Region 会进行自动切分。1.2 数据存储原理。原创 2024-09-30 11:46:41 · 1587 阅读 · 0 评论 -
元数据的 介绍和采集
元数据字段的采集可以通过被动采集、主动采集和混合采集实现,而采集的元数据种类包括与数据流、任务状态、容错和监控相关的多种信息。例如,系统在正常运行时可以自动记录任务状态和性能数据,但在故障发生时,管理员可以通过接口主动获取故障相关的详细元数据。采集元数据的过程涉及系统中多个层级的操作,元数据通常用于监控、调度、状态一致性、容错和性能优化等多个方面。主动采集是指系统通过用户或管理平台主动发起对元数据的采集请求,通常用于定期分析系统的运行状况或者在特定事件发生时进行的元数据记录。:每条数据流事件的唯一标识符。原创 2024-09-30 10:00:24 · 1223 阅读 · 0 评论 -
HBase 的基本架构 详解
HBase 是一个分布式的、面向列的数据库,构建在 HDFS(Hadoop Distributed File System)之上,提供高效的随机读写操作。为了全面理解 HBase 的基础架构,需要从逻辑架构、物理存储、组件之间的交互、数据管理和底层设计出发,结合源码进行深入剖析。原创 2024-09-27 17:36:29 · 1210 阅读 · 0 评论 -
Spark 中 任务集 TaskSet 详解
在 Spark 源代码中,TaskSet类主要定义在文件中。其主要作用是将一组任务(Task)封装成一个集合,并向调度器提供这些任务以进行调度。以下是TaskSetTaskSet整个TaskSet用户提交的Action操作触发 Spark 的,并将计算分解为多个Stage。每个Stage会生成一个TaskSet对象,包含所有任务(分区)并提交给。创建并负责调度TaskSet中的任务。根据可用的资源和数据本地性,将任务分配给合适的执行器。执行器执行任务并返回结果。如果任务失败,会处理重试逻辑。原创 2024-09-27 10:17:29 · 1088 阅读 · 0 评论 -
Spark Job 对象 详解
Spark 中的Job主要用于表示一个具体的计算作业,它是由用户提交的Action(例如count()collect()等)触发的。这些动作会生成一个Job对象,最终调度并执行一系列与之相关的任务。Job的核心作用Job是 Spark 中用于管理由Action操作触发的计算任务。它通过划分执行阶段(Stages),并调度相应的任务执行,最终将计算结果返回给用户。代码实现Job在 Spark 源码中作为调度系统的一个重要组成部分,由创建并管理。负责将用户的作业拆解为可执行的阶段和任务,并交由执行。原创 2024-09-27 10:00:03 · 1105 阅读 · 0 评论 -
Spark 中所有用到了Job对象的组件模块和关系
负责整个Job的生命周期管理,包括阶段划分、任务调度、任务失败重试等。StageJob被分解为多个Stage,每个Stage对应于一组可并行执行的Task。Task和TaskSetStage被分解为多个Task,并通过TaskSet提交执行。和负责将任务调度到集群中具体的节点,负责与集群管理器交互,启动执行器并分配任务。ActiveJob:代表正在运行的Job,并与一起跟踪其状态。:负责Shuffle操作中,数据的输出位置跟踪与管理。Job。原创 2024-09-27 09:39:47 · 901 阅读 · 0 评论 -
Spark 任务与 Spark Streaming 任务的差异详解
任务调度:Spark 任务基于静态数据集,采用一次性批处理模式;Spark Streaming 任务基于流数据,采用微批处理模式,每隔一个时间窗口生成新的任务。数据处理:Spark 处理静态的 RDD,数据只计算一次;Spark Streaming 处理离散化的流数据,每个时间窗口生成一个新的 RDD 并计算。容错机制:Spark 任务依赖 RDD 血缘关系进行数据恢复;Spark Streaming 除了依赖血缘关系外,还引入了 WAL 和 Checkpointing 来保证流数据的容错性。原创 2024-09-24 16:20:32 · 1499 阅读 · 3 评论 -
Spark Streaming 容错机制详解
Spark Streaming 是 Spark 生态系统中用于处理实时数据流的模块。它通过微批处理(micro-batch)的方式将实时流数据进行分片处理,每个批次的计算本质上是 Spark 的批处理作业。为了保证数据的准确性和系统的可靠性,Spark Streaming 实现了多种容错机制,包括数据恢复、任务失败重试、元数据恢复等。 接下来,我们将从底层原理和源代码的角度详细解释 Spark Streaming 是如何实现容错的。在处理实时数据时,可能会遇到各种问题,如:Spark Stre原创 2024-09-24 15:25:10 · 1185 阅读 · 0 评论 -
Hive 的窗口函数 详解
逻辑层是 Hive 中的窗口函数,它依赖分区和排序规则来生成每个分区中的行号。物理层:Hive 在执行时,通过MapReduce或Tez实现了分布式排序和行号分配,关键类如和负责处理窗口函数的具体逻辑。性能优化:通过合理调优 Hive 参数、增加并行度和使用高效的执行引擎如 Tez,可以显著提升的执行效率。原创 2024-09-24 14:39:23 · 1367 阅读 · 0 评论 -
Hive ROW_NUMBER() 简介
解析查询:Hive 将的 SQL 查询解析为抽象语法树(AST)。生成执行计划:查询计划中包含窗口函数的计算,分布在不同的任务和阶段。Map 阶段:数据读取并按分区分配给不同的 Reduce 任务。Reduce 阶段:数据按照指定的ORDER BY进行排序,并生成行号。返回结果:结果集带有唯一的行号。原创 2024-09-24 14:32:00 · 915 阅读 · 0 评论 -
flink 的 Barrier 数据结构
流式系统在处理这些事件时,会在合适的点上插入 Barrier,并确保每个并行处理子任务(Operator)都能接收到该 Barrier,以便完成状态快照和一致性维护。Barrier 是流式处理系统中的一个轻量级标记,它携带的信息通常包括:唯一标识符(ID)、时间戳、序列号、以及一些控制标志。,它通常在数据流中作为一个特殊的事件存在,并在多个数据流分支中流动。Barrier 主要是用于标识数据流中的特殊点,在这些点上,系统会进行状态的快照,以便在故障发生时可以从快照恢复。在 Flink 中,原创 2024-09-24 14:12:12 · 1072 阅读 · 0 评论 -
flink 的 Barrier 对齐 的优劣详解:
Barrier 对齐涉及复杂的调度机制,特别是当流处理系统中存在多个并行计算任务时,需要协调每个子任务的状态和 Barrier 的传播,这增加了系统的复杂性和维护成本。,可以减少单个流的处理负担,从而提高处理效率,减少等待 Barrier 对齐的时间。通过 Barrier 对齐,系统确保了来自不同流分支的数据按照正确的顺序进行处理,避免了由于数据流速度不同或者乱序传输导致的结果不一致问题。是在数据流中插入的一种特殊的标记,用来指示在某个时间点,流经系统的所有数据都达到了一个一致的状态。原创 2024-09-24 11:58:43 · 1287 阅读 · 0 评论 -
Spark 的 Skew Join 详解
数据倾斜指的是当某些key关联了异常大量的数据,而其他key关联的数据量较少时,数据分布的不均衡会导致计算瓶颈。例如,在JOIN操作中,如果表 A 中某个key具有大量的数据,而表 B 中同样的key也有大量数据,当这两个表基于这个key进行JOIN时,由于该key被分配到一个或少数几个分区,相关的任务会处理大量的数据,而其他分区的任务数据量却较少。这会导致部分任务比其他任务运行时间长,从而影响整个任务的执行时间。Skew Join是 Spark 中为了解决数据倾斜问题而提供的一种重要优化机制。原创 2024-09-24 11:46:44 · 1141 阅读 · 0 评论 -
spark 大表与大表join时的Shuffle机制和过程
在 Spark 的大表JOIN过程中,Shuffle机制是核心的步骤,其主要职责是重新分发数据使得相同 key 的记录能够分布到同一个节点。Shuffle的开销主要在于数据的网络传输和磁盘 I/O,因此有效的分区策略、数据倾斜处理以及JOIN算法选择都是优化此过程的关键。通过对 Shuffle 源码和物理执行计划的理解,可以帮助开发者更好地调优 Spark 应用的性能。原创 2024-09-24 10:59:10 · 1081 阅读 · 0 评论 -
Clickhouse存储数据流程
由于同一列的数据通常是高度相似的,因此列式存储能够实现极高的压缩比,进一步减少磁盘占用和 I/O 传输量。ClickHouse 的查询引擎在执行查询时,可以快速读取这些经过压缩和排序的数据,并利用分区和索引进一步提升查询速度。这样做可以减少频繁的磁盘写入,提升性能。合并后,ClickHouse 会删除原来的小数据片段,并保留合并后的较大片段,从而优化查询时的 I/O 性能。:ClickHouse 的后台线程会定期执行合并操作,将多个数据片段合并为更大的片段,以提升查询性能,并在必要时进行去重。原创 2024-09-23 17:34:07 · 932 阅读 · 0 评论 -
通过 Flink 的火焰图定位反压
在 Apache Flink 中,Web UI 提供了丰富的监控工具来帮助用户分析和解决作业性能问题,其中火焰图(Flame Graph)是用于分析反压问题的一个强有力的工具。通过 Flink 的火焰图,你可以清晰地了解作业中各个算子的 CPU 时间分布,进而发现处理速度慢的地方。火焰图不仅能够帮助定位 CPU 的消耗,还能够通过 CPU 负载的分布,帮助你理解反压传播的路径。通过这些数据,你可以找到性能异常的算子或任务,并结合火焰图分析这些任务的 CPU 使用情况,确定性能瓶颈。原创 2024-09-23 17:24:51 · 1169 阅读 · 0 评论 -
Spark 中 Join 操作的实现原理与源码分析
Join操作是用于合并两个数据集(DataFrame或RDD)的常见操作。原创 2024-09-23 17:03:58 · 1182 阅读 · 0 评论 -
Flink的反压机制:底层原理、产生原因、排查思路与解决方案
在解决反压时,应该首先通过 Flink 的监控工具排查具体原因,然后根据实际情况采取针对性的解决方案,如增加并行度、优化算子逻辑、调整分区策略、优化外部系统等。通过合理的反压处理,可以显著提高 Flink 作业的稳定性和处理效率。在 keyBy 操作后,不同的并行子任务(subtask)可能收到的数据量不均衡,某些子任务的数据量远远多于其他任务,这会导致这些任务的处理速度显著下降,进而引发反压。反压的产生通常是因为数据流中的某些算子处理数据的速度低于其上游算子的输出速度,导致下游的缓冲区耗尽,引发反压。原创 2024-09-20 17:21:27 · 1750 阅读 · 0 评论