L2-029 特立独行的幸福 (25 分)
L2-029 特立独行的幸福 (25 分)
对一个十进制数的各位数字做一次平方和,称作一次迭代。如果一个十进制数能通过若干次迭代得到 1,就称该数为幸福数。1 是一个幸福数。此外,例如 19 经过 1 次迭代得到 82,2 次迭代后得到 68,3 次迭代后得到 100,最后得到 1。则 19 就是幸福数。显然,在一个幸福数迭代到 1 的过程中经过的数字都是幸福数,它们的幸福是依附于初始数字的。例如 82、68、100 的幸福是依附于 19 的。而一个特立独行的幸福数,是在一个有限的区间内不依附于任何其它数字的;其独立性就是依附于它的的幸福数的个数。如果这个数还是个素数,则其独立性加倍。例如 19 在区间[1, 100] 内就是一个特立独行的幸福数,其独立性为 2×4=8。
另一方面,如果一个大于1的数字经过数次迭代后进入了死循环,那这个数就不幸福。例如 29 迭代得到 85、89、145、42、20、4、16、37、58、89、…… 可见 89 到 58 形成了死循环,所以 29 就不幸福。
本题就要求你编写程序,列出给定区间内的所有特立独行的幸福数和它的独立性。
输入格式:
输入在第一行给出闭区间的两个端点:1<A<B≤10 4 。
输出格式:
按递增顺序列出给定闭区间 [A,B] 内的所有特立独行的幸福数和它的独立性。每对数字占一行,数字间以 1 个空格分隔。
如果区间内没有幸福数,则在一行中输出 SAD。
输入样例 1:
10 40
输出样例 1:
19 8
23 6
28 3
31 4
32 3
注意:样例中,10、13 也都是幸福数,但它们分别依附于其他数字(如 23、31 等等),所以不输出。其它数字虽然其实也依附于其它幸福数,但因为那些数字不在给定区间 [10, 40] 内,所以它们在给定区间内是特立独行的幸福数。
输入样例 2:
110 120
输出样例 2:
SAD
思路
在给定的区间中依次枚举每一个数,然后对每一个数进行判断,然后判重
感谢博主 : https://blog.csdn.net/qq_41376345/article/details/89053324
AC代码
#include<iostream>
#include<stdio.h>
#include<vector>
#include<math.h>
#include<map>
#include<algorithm> //find函数要加此头文件
using namespace std;
int is_prime(int n)
{
if(n<2) return 1;
for(int i=2;i<=sqrt(n);i++)
{
if(n%i==0) return 1;
}
return 2;
}
int main()
{
int left,right,appear[100001]={0}; //标记是否出现过
cin>>left>>right;
map<int,int> result; //存储答案和次数
for(int i=left;i<=right;i++)
{
int n=i,sum=0;
vector<int> v; //统计转换了几次
while(n!=1)
{
sum=0;
while(n)
{
sum+=(n%10)*(n%10);
n/=10;
}
n=sum;
if(find(v.begin(),v.end(),sum)!=v.end())
break; //判断重复
v.push_back(n);
appear[n]=1;
}
if(n==1) result[i]=v.size();
}
map<int,int>::iterator it;
int flag=0;
for(it=result.begin();it!=result.end();it++)
{
if(!appear[it->first])
{
printf("%d %d\n",it->first,it->second*is_prime(it->first));
flag=1;
}
}
if(flag==0) printf("SAD");
return 0;
}