L2-029 特立独行的幸福 (25 分)

对一个十进制数的各位数字做一次平方和,称作一次迭代。如果一个十进制数能通过若干次迭代得到 1,就称该数为幸福数。1 是一个幸福数。此外,例如 19 经过 1 次迭代得到 82,2 次迭代后得到 68,3 次迭代后得到 100,最后得到 1。则 19 就是幸福数。显然,在一个幸福数迭代到 1 的过程中经过的数字都是幸福数,它们的幸福是依附于初始数字的。例如 82、68、100 的幸福是依附于 19 的。而一个特立独行的幸福数,是在一个有限的区间内不依附于任何其它数字的;其独立性就是依附于它的的幸福数的个数。如果这个数还是个素数,则其独立性加倍。例如 19 在区间[1, 100] 内就是一个特立独行的幸福数,其独立性为 2×4=8。

另一方面,如果一个大于1的数字经过数次迭代后进入了死循环,那这个数就不幸福。例如 29 迭代得到 85、89、145、42、20、4、16、37、58、89、…… 可见 89 到 58 形成了死循环,所以 29 就不幸福。

本题就要求你编写程序,列出给定区间内的所有特立独行的幸福数和它的独立性。

输入格式:

输入在第一行

给出闭区间的两个端点:1<A<B≤10​4​​。

输出格式:

按递增顺序列出给定闭区间 [A,B] 内的所有特立独行的幸福数和它的独立性。每对数字占一行,数字间以 1 个空格分隔。

如果区间内没有幸福数,则在一行中输出 SAD

输入样例 1:

10 40

输出样例 1:

19 8
23 6
28 3
31 4
32 3

注意:样例中,10、13 也都是幸福数,但它们分别依附于其他数字(如 23、31 等等),所以不输出。其它数字虽然其实也依附于其它幸福数,但因为那些数字不在给定区间 [10, 40] 内,所以它们在给定区间内是特立独行的幸福数。

输入样例 2:

110 120

输出样例 2:

SAD

 

#include<iostream>
#include<stdio.h>
#include<iostream>
#include<vector>
#include<math.h>
#include<map>
#include<algorithm>  //find函数要加此头文件 
using namespace std;
int is_prime(int n)
{
	if(n<2) return 1;
	for(int i=2;i<=sqrt(n);i++)
	{
		if(n%i==0) return 1;
	}
	return 2;
} 
int main()
{
	int left,right,appear[100001]={0};
	cin>>left>>right;
	map<int,int> result; 
	for(int i=left;i<=right;i++)	
	{
		int n=i,sum=0;
		vector<int> v;
		while(n!=1)
		{
			sum=0;
			while(n)
			{
				sum+=(n%10)*(n%10);
				n/=10;				
			}
			n=sum;
			if(find(v.begin(),v.end(),sum)!=v.end()) 
				break; //判断重复
			v.push_back(n);
			appear[n]=1;
		}
		if(n==1) result[i]=v.size();  
	}
	map<int,int>::iterator it;
	int flag=0;
	for(it=result.begin();it!=result.end();it++)
	{
		if(!appear[it->first])
		{
			printf("%d %d\n",it->first,it->second*is_prime(it->first));
			flag=1;
		}
	}
	if(flag==0) printf("SAD");
	return 0;
} 
7-6 特立独行幸福 (25) 对一个十进制数的各位数字做一次平方和,称作一次迭代。如果一个十进制数能通过若干次迭代得到 1,就称该数为幸福数。1 是一个幸福数。此外,例如 19 经过 1 次迭代得到 82,2 次迭代后得到 68,3 次迭代后得到 100,最后得到 1。则 19 就是幸福数。显然,在一个幸福数迭代到 1 的过程中经过的数字都是幸福数,它们的幸福是依附于初始数字的。例如 82、68、100 的幸福是依附于 19 的。而一个特立独行幸福数,是在一个有限的区间内不依附于任何其它数字的;其独立性就是依附于它的的幸福数的个数。如果这个数还是个素数,则其独立性加倍。例如 19 在区间[1, 100] 内就是一个特立独行幸福数,其独立性为 2×4=8。 另一方面,如果一个大于1的数字经过数次迭代后进入了死循环,那这个数就不幸福。例如 29 迭代得到 85、89、145、42、20、4、16、37、58、89、…… 可见 89 到 58 形成了死循环,所以 29 就不幸福。 本题就要求你编写程序,列出给定区间内的所有特立独行幸福数和它的独立性。 输入格式: 输入在第一行给出闭区间的两个端点:1<A<B≤10 ​4 ​​ 。 输出格式: 按递增顺序列出给定闭区间 [A,B] 内的所有特立独行幸福数和它的独立性。每对数字占一行,数字间以 1 个空格隔。 如果区间内没有幸福数,则在一行中输出 SAD。 输入样例 1: 10 40 输出样例 1: 19 8 23 6 28 3 31 4 32 3 注意:样例中,10、13 也都是幸福数,但它们别依附于其他数字(如 23、31 等等),所以不输出。其它数字虽然其实也依附于其它幸福数,但因为那些数字不在给定区间 [10, 40] 内,所以它们在给定区间内是特立独行幸福数。 输入样例 2: 110 120 输出样例 2: SAD
这道题目是一道算法题,需要我们设计一个算法来解决问题。具体来说,我们需要找到一种方法,使得在一个给定的序列中,能够找到一个子序列,使得该子序列中的所有元素都是不同的,并且该子序列的长度最长。 这个问题可以使用贪心算法来解决。具体来说,我们可以从序列的第一个元素开始,依次向后遍历每个元素。对于每个元素,我们可以将其加入到当前的子序列中,如果该元素已经在子序列中出现过了,那么我们就需要将子序列中该元素之前的所有元素都删除,然后再将该元素加入到子序列中。这样,我们就可以保证子序列中的所有元素都是不同的,并且该子序列的长度最长。 具体的实现过程可以参考以下代码: ```python n = int(input()) a = list(map(int, input().split())) s = set() ans = j = for i in range(n): while a[i] in s: s.remove(a[j]) j += 1 s.add(a[i]) ans = max(ans, len(s)) print(ans) ``` 在这段代码中,我们使用了一个集合 `s` 来保存当前的子序列。对于每个元素 `a[i]`,我们首先判断它是否已经在集合中出现过了,如果是的话,就需要将集合中该元素之前的所有元素都删除,然后再将该元素加入到集合中。最后,我们更新答案 `ans`,使其等于当前子序列的长度和之前的答案中的较大值。 这样,我们就可以通过贪心算法来解决这个问题了。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值