视觉
文章平均质量分 85
gqk01
这个作者很懒,什么都没留下…
展开
-
傅里叶变换
傅里叶变换是将图像表示为不同幅值、频率和相位的复指数之和。傅里叶变换在广泛的图像处理应用中起着至关重要的作用,包括增强、分析、还原和压缩。如果 f(m,n) 是两个离散空间变量 m 和 n 的函数,则 f(m,n) 的二维傅里叶变换由如下关系定义:变量 ω1 和 ω2 是频率变量;其单位是弧度/采样。F(ω1,ω2) 通常称为 f(m,n) 的频域表示。F(ω1,ω2) 是复数值函数,在 ω1 和 ω2 中均呈现周期性,期间为 2π。由于具有周期性,通常只显示范围 −π≤ω1,ω2≤π。原创 2024-07-05 10:04:05 · 1113 阅读 · 0 评论 -
关于齐次坐标的理解
在数学里,齐次坐标(homogeneous coordinates),或投影坐标(projective coordinates)是指一个用于投影几何里的坐标系统。在齐次坐标的定义中,一个点的齐次坐标乘上一个非零标量,所得坐标会表示同一个点。[2] 齐次坐标:https://zh.wikipedia.org/wiki/%E9%BD%90%E6%AC%A1%E5%9D%90%E6%A0%87。有理贝兹曲线-定义于齐次坐标内的多项式曲线(蓝色),以及于平面上的投影-有理曲线(红色)W 为投影平面。原创 2024-07-04 13:33:17 · 1581 阅读 · 0 评论 -
亚像素 / sub-pixel、亚像素卷积
因此pixel shuffle通过亚像素卷积的方式,实现从低分辨图到高分辨图的重构,具体如下所示,通过将多通道feature上的单个像素组合成一个feature上的单位即可,每个feature上的像素就相当于新的feature上的亚像素了。例如两个感官原件上的像素之间有4.5um的间距,宏观上它们是连在一起的,微观上它们之间还有无数微小的东西存在,这些存在于两个实际物理像素之间的像素,就被称为“亚像素”。亚像素卷积,是一种正常卷积的简化形式,并加了很强的假设,结果就是去除了大量的卷积运算。原创 2024-07-04 10:47:56 · 1084 阅读 · 0 评论 -
图像锐化-拉普拉斯算子 Sobel算子
本文主要介绍图像锐化和边缘检测知识,详细讲解了 Sobel 算子和 Laplacian 算子,并通过小珞珞图像进行边缘轮廓提取。图像锐化和边缘提取技术可以消除图像中的噪声,提取图像信息中用来表征图像的一些变量,为图像识别提供基础。原创 2024-03-07 08:29:06 · 2536 阅读 · 0 评论 -
HALCON 快速入门手册
/设置 Halcon 控件中图像的显示尺寸。License 下载地址: https://www.51halcon.com/thread-387-1-1.html。各个版本下载地址: https://pan.baidu.com/s/1ecI5KMuzJRmyzX6XvPCj2A。菜单栏中的助手--->打开新的 ImageAcquisition--->图像文件--->选择文件--->代码生成。菜单栏中的助手--->打开新的 ImageAcquisition--->自动获取接口或者选择接口--->在连。原创 2024-03-05 21:23:05 · 2172 阅读 · 0 评论 -
图像处理 mask掩膜
其实就是原图中的每个像素和掩膜中的每个对应像素进行与运算。比如1 & 1 = 1;1 & 0 = 0;比如一个 3*3 的图像与 3*3 的掩膜进行运算,得到的结果图像就是:说白了,mask就是位图,来选择哪个像素允许拷贝,哪个像素不允许拷贝,如果mask像素的值时非0的,我们就拷贝它,否则不拷贝。原创 2024-03-05 08:57:19 · 1856 阅读 · 0 评论 -
图像处理基础——频域、时域
所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。因为信号不仅随时间变化,还与频率、相位等信息有关,这就需要进一步分析信号的频率结构,并在频率域中对信号进行描述。自变量是频率,即横轴是频率,纵轴是该频率信号的幅度,也就是通常说的频谱图。频域是把时域波形的表达式做傅立叶等变化得到复频域的表达式,所画出的波形就是频谱图,是描述频率变化和幅度变化的关系。原创 2024-02-29 09:37:58 · 5493 阅读 · 0 评论