自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 import clip时Cannot re-initialize CUDA in forked subprocess

import clip时multiprocess的bug

2022-06-11 02:32:41 413

原创 Windows ML ONNX 踩坑更新中

Windows ML ONNX 更新ing入门环境Windows 10 (Version 1809 or higher)Windows 10 SDK (Build 17763 or higher)Visual Studio 2019 (or Visual Studio 2017, version 15.7.4 or later)An account at Custom Vision ...

2019-12-06 16:26:12 685

原创 Faster-RCNN遇到的问题

faster-rcnn

2017-11-07 11:20:23 389

原创 【教程】Matlab之正版静默安装教程(Linux16.04 无图形化界面)

Matlab2015b + Ubuntu16.04

2017-08-10 15:50:15 4486

原创 【笔记】各种锅的记录之未完待续

各种锅的记录

2017-08-06 23:09:02 660

原创 【笔记】有点麻烦的MatConvNet的dagnn的debug过程

尝试用MatConvNet训练,然而遇到了以下bugNo public property dilate exists for class dagnn.Conv.

2017-08-02 19:35:30 3352 1

转载 【笔记】MatConvNet训练小记

【笔记】MatConvNet训练小记1. 训练数据(Training Set) 用于调整网络的权重(weights)和偏差(biases)。 2. 验证数据(Validation Set) 验证数据用于最小化过拟合(overfitting)。 这数据不调整权重和偏差。在基于训练数据调整权重之后,如果基于训练数据的准确度增加了,而基于验证数据的准确度没有增加或反而下降了

2017-08-02 19:10:41 637

转载 【笔记】Matconvnet在windows8下编译安装过程

转载自:Matconvnet在windows8下编译安装过程http://blog.csdn.net/gogoaway/article/details/50963145Matconvnet在windows8下编译过程Matconvnet现在已经发行到1.0beta18版本,而之前一些训练好的网络使用的是1.0beta10或者更低,这使得已经训练好的网络由

2017-07-26 17:25:54 349

原创 【Deep Learning】caffe学习笔记(二):mnist

详情可以看http://www.cnblogs.com/codingmengmeng/p/6184393.html非常详细的教程注意事项:1. 下载训练集(注意百度云下载的和后续lenet_train_test.prototxt中的文件名对不上,要修改一致)2. 把.sh直接改成.bat3. 没有改GPU的设置4. 注意train_lenet.bat中caffe

2017-07-19 11:43:34 233

原创 【Deep Learning】caffe学习笔记(一):安装

一场艰辛的caffe安装之旅要安装caffe的步骤还是很麻烦的,网上各种教程说的也不完全适用自己的,于是就想自己写一点东西:安装环境安装软件列表详细步骤bug汇总UML序列图和流程图安装环境Windows Server 2016 x64显卡驱动已装好其他啥软件也没有安装软件列表Visual Studio 2015CudaCudnnAnaconda2Cmake 3.详细步

2017-07-19 10:14:08 368

原创 【笔记】Action Recognition from video (一)

一.      视频内容人物+场景+动作+语音二.      传统手工特征-iDT1.      密集采样:DT方法通过网格划分的方式在图片的多个尺度上分别密集采样特征点2.      去除特征点:去除一些特征点(此处的方法是计算每个像素点自相关矩阵的特征值,并设置阈值去除低于阈值的特征点。阈值由下式决定:T=0.001×maxi∈Imin(λ1i,λ2i))3.      在

2017-07-10 15:16:53 486

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除