enumerate用法详解、with torch.no_grad():用法详解、torch.max用法详解、torch.cuda的一些指令、torch.device的用法、torch.load报错

本文详细介绍了PyTorch中关键函数与模块的使用方法,包括enumerate、withtorch.no_grad()、torch.max等函数的应用场景及torch.device()的配置指南,并针对torch.load()常见错误进行了解析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.enumerate用法详解:enumerate

2.with torch.no_grad():用法详解:with torch.no_grad():

3.torch.max用法详解:torch.max

4.torch.cuda的一些指令:torch.cuda指令

5.torch.device()的简单用法:torch.device()

5.1指定设备

5.1.1使用的具体设备

5.1.2使用GPU,但没有具体设备

5.2将构建的张量或者模型分配到相应的设备上

6.torch.load()报错:RuntimeError: Attempting to deserialize object on CUDA device 2 but torch.cuda.device_count() is 1


1.enumerate用法详解:enumerate

总结:一般用于列表,既遍历索引又遍历元素。

2.with torch.no_grad():用法详解:with torch.no_grad():

总结:在该模块下,所有计算得出的tensor的requires_grad都自动设置为False。

3.torch.max用法详解:torch.max

总结:按维度dim返回最大值以及索引。

4.torch.cuda的一些指令:torch.cuda指令

5.torch.device()的简单用法:torch.device()

总结:

5.1指定设备

5.1.1使用的具体设备

device = torch.device('cuda', 0)
device = torch.device('cuda:0')

没有显式指定设备序号的话则使用

device = torch.device('cuda', torch.cuda.current_device())

5.1.2使用GPU,但没有具体设备

device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 

5.2将构建的张量或者模型分配到相应的设备上

data = data.to(device)
model = Model(...).to(device)        # 这里Model是一个类

6.torch.load()报错:RuntimeError: Attempting to deserialize object on CUDA device 2 but torch.cuda.device_count() is 1

总结:模型训练的GPU个数和现有GPU个数不匹配

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值