3、低秘密指数RSA与小度数多项式小解的研究

低秘密指数RSA与小度数多项式小解的研究

低秘密指数RSA相关研究

在低秘密指数RSA的研究中,有诸多重要的成果和发现。

新边界的计算

对于格L,由于其格基是三角形的,计算格L的行列式相对容易。格的维度w等于两组块$X_{m - t}, \cdots, X_m$和$Y_1, \cdots, Y_t$中向量的数量,即:
$w = \sum_{i = m - t}^{m} (i + 1) + \sum_{i = 1}^{t} i = (m + 1)(t + 1)$
对于格$L_{BD}$,有$w = (m + 1)(m + 2)/2 + t(m + 1)$。通过计算行列式$det(L)$作为$e$、$m$、$t$和$\delta$的函数,并利用初等微积分找到作为$m$、$\delta$函数的最优$t$。类似于Boneh/Durfee方法,求解不等式$det(L) < e^{mw}$以得到$\delta$的最大值,得出边界$\delta < \frac{\sqrt{6} - 1}{5} \approx 0.290$。

启发式方法失效的情况

当$L_{BD}$仅使用$x$ - 移位多项式$g_{i,k}$构造时,Boneh/Durfee方法在实验中总是失败。具体来说,从$L_{BD}$的$L_3$ - 约化基中的两个最短向量得到的多项式,关于$x$的结式恒为0。
在特殊情况$t = 0$和$m = l_1$下,格L仅由块$X_{l_1}$中的向量组成。简单的行列式计算表明,当$\delta < 0.25$时,对于每个$X_{l_1}$块,存在块$X_{l_1}$中向量的线性组合比$e^m$短。

永磁同步电机超前角弱磁MTPA+SVPWM双模式过调制+矢量控制仿真(技术文档+参考文献)内容概要:本文档围绕永磁同步电机(PMSM)的先进控制策略展开,重点介绍了基于最大转矩电流比(MTPA)的矢量控制、超前角弱磁控制以及SVPWM双模式过调制技术的仿真研究。结合Matlab/Simulink平台,实现了包括龙贝格观测器、三电阻双AD采样、前馈控制、斜坡启动等功能模块的无传感器控制系统设计,构建了完整的电机驱动系统仿真模型。文档不仅提供了详细的技术实现路径,还附带参考文献代码资源,便于复现和深入研究。; 适合人群:具备电机控制理论基础和Matlab/Simulink仿真经验的电气工程、自动化及相关专业的研究生、科研人员及从事电机驱动系统开发的工程师。; 使用场景及目标:①掌握永磁同步电机高性能控制算法的设计仿真方法;②实现无传感器矢量控制系统的搭建优化;③深入理解弱磁控制、MTPA、SVPWM过调制等关键技术在实际系统中的应用协调机制;④为科研项目、毕业设计或工业研发提供可复现的技术参考仿真基础。; 阅读建议:建议结合文中提及的Matlab代码Simulink模型进行同步仿真验证,重点关注各控制模块的参数设计接口逻辑,同时参考所列文献深化理论理解,以实现从仿真到实际系统开发的顺利过渡。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值