
深度学习
文章平均质量分 92
椒颜皮皮虾྅
英特尔边缘计算创新大使 百度飞桨开发者技术专家(PPDE) OpenVINO C# API NuGet Package 作者 主要致力于模型部署相关方面的研究,OpenVINO、TensorRT模型部署套件在C#端使用。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【OpenVINO™】在 Intel Ultra AI PC 设备上使用 OpenVINO™ C# API本地部署YOLOv11与YOLOv12
将使用英特尔® 酷睿™ Ultra 处理器AI PC设备,结合OpenVINO™ C# API 使用最新发布的OpenVINO™ 2025.0 部署YOLOv11 和 YOLOv12 目标检测模型,并在AIPC设备上,进行速度测试。原创 2025-03-02 16:49:57 · 1336 阅读 · 0 评论 -
【TensorRT】TensorRT C# API 项目介绍:基于C#与TensorRT部署深度学习模型(下篇)
开发了TensorRT C# API 2.0版本,该版本在开发时充分考虑了上一版本应用时出现的问题,并进行了改进。同时在本版本中,我们对接口进行了优化,使用起来更加简单,并同时提供了相关的应用案例,方便开发者进行使用。原创 2024-04-01 13:09:32 · 1517 阅读 · 3 评论 -
【TensorRT】TensorRT C# API 项目介绍:基于C#与TensorRT部署深度学习模型(上篇)
开发了TensorRT C# API 2.0版本,该版本在开发时充分考虑了上一版本应用时出现的问题,并进行了改进。同时在本版本中,我们对接口进行了优化,使用起来更加简单,并同时提供了相关的应用案例,方便开发者进行使用。原创 2024-04-01 13:08:49 · 2448 阅读 · 0 评论 -
【OpenVINO™】在 MacOS 上使用 OpenVINO™ C# API 部署 Yolov5 (下篇)
YOLOv5 是革命性的 "单阶段"对象检测模型的第五次迭代,旨在实时提供高速、高精度的结果,是世界上最受欢迎的视觉人工智能模型,代表了Ultralytics对未来视觉人工智能方法的开源研究,融合了数千小时研发中积累的经验教训和最佳实践。同时官方发布的模型已经支持 OpenVINO™ 部署工具加速模型推理,因此在该项目中,我们将结合之前开发的 OpenVINO™ C# API 部署 YOLOv5 DET 模型实现物体对象检测。原创 2024-02-06 11:42:21 · 1687 阅读 · 0 评论 -
【OpenVINO™】在 MacOS 上使用 OpenVINO™ C# API 部署 Yolov5 (上篇)
YOLOv5 是革命性的 "单阶段"对象检测模型的第五次迭代,旨在实时提供高速、高精度的结果,是世界上最受欢迎的视觉人工智能模型,代表了Ultralytics对未来视觉人工智能方法的开源研究,融合了数千小时研发中积累的经验教训和最佳实践。同时官方发布的模型已经支持 OpenVINO™ 部署工具加速模型推理,因此在该项目中,我们将结合之前开发的 OpenVINO™ C# API 部署 YOLOv5 DET 模型实现物体对象检测。原创 2024-02-06 11:38:19 · 1473 阅读 · 0 评论 -
【OpenVINO】使用OpenVINO实现 RT-DETR 模型 INT8量化推理加速
我们基于OpenVINO下的模型优化工具NNCF,实现了RT-DETR模型的INT8量化,并且在损失极少的精度代价下,实现了模型推理速度提升3~4倍左右,模型大小将为原来的1/4,即提升了模型的推理速度,又降低了模型推理占用内存,这对在边缘设备部署具有十分重要的意义。原创 2023-12-13 14:13:02 · 1629 阅读 · 0 评论 -
【Yolov8】基于C#和TensorRT部署Yolov8全系列模型
该项目主要基于TensorRT模型部署套件,在C#平台部署Yolov8模型,包括Yolov8系列的对象检测、图像分割、姿态识别和图像分类模型,实现C#平台推理加速Yolov8模型。原创 2023-04-19 13:30:07 · 10223 阅读 · 71 评论 -
【Yolov8】基于C#和OpenVINO部署Yolov8全系列模型
该项目主要基于OpenVINO™模型部署套件,在C#平台部署Yolov8模型,包括Yolov8系列的对象检测、图像分割、姿态识别和图像分类模型,实现C#平台推理加速Yolov8模型。原创 2023-04-19 12:32:29 · 8185 阅读 · 42 评论 -
Paddle Inference C++ 依赖库安装(Windows)
Paddle Inference 是飞桨的原生推理库, 提供服务器端的高性能推理能力。由于 Paddle Inference 能力直接基于飞桨的训练算子,因此它支持飞桨训练出的所有模型的推理。Paddle Inference 功能特性丰富,性能优异,针对不同平台不同的应用场景进行了深度的适配优化,做到高吞吐、低时延,保证了飞桨模型在服务器端即训即用,快速部署。此处针对使用GPU加速的方式安装,主要依靠NVIDIA 官方文档了解 CUDA、cuDNN 和 TensorRT。原创 2022-10-14 16:14:07 · 3146 阅读 · 4 评论 -
【TensorRT】NVIDIA TensorRT 安装 (Windows C++)
NVIDIA TensorRT™ 是用于高性能深度学习推理的 SDK,可为深度学习推理应用提供低延迟和高吞吐量。基于 NVIDIA TensorRT 的应用程序在推理过程中的执行速度比仅使用 CPU 的平台快 36 倍,使开发人员能够优化在所有主要框架上训练的神经网络模型,以高精度校准以降低精度,并部署到超大规模数据中心、嵌入式平台或汽车产品平台。原创 2022-10-14 15:37:34 · 5925 阅读 · 22 评论 -
【OpenVINO】C#调用OpenVINO部署Al模型项目开发-6.C#实现OpenVINOTM方法的调用
C#调用OpenVINOTM部署Al模型项目开发项目,简称OpenVinoSharp,这是一个示例项目,该项目实现在C#编程语言下调用Intel推出的 OpenVINO™ 工具套件,进行深度学习等Al项目在C#框架下的部署。该项目由C++语言编写OpenVINO™ API接口,并在C#语言下实现应用。......原创 2022-09-15 10:34:42 · 1140 阅读 · 7 评论 -
【深度学习案例】手写数字项目实现-3. Matlab深度学习模型训练
该项目通过手写数字识别实现简单的深度学习模型训练实现,充分认识深度学习项目构建过程,提供Matlab以及Python实现版本。手写数字识别是指给定一系列的手写数字图片以及对应的数字标签,构建模型进行学习,目标是对于一张新的手写数字图片能够自动识别出对应的数字。图像识别是指利用计算机对图像进行处理,通过模型对其分析和理解,得到图片文件中所写的数字。在人工智能领域,手写数字识别被问题转换为自动分类问题。将0~9之内的10个数字分为10类,通过模型训练,实现对数字图片的分类,间接获取数字图片上的手写数字。...原创 2022-08-19 20:52:36 · 1577 阅读 · 0 评论 -
【深度学习案例】手写数字项目实现-2.Python模型训练
该项目通过手写数字识别实现简单的深度学习模型训练实现,充分认识深度学习项目构建过程,提供Matlab以及Python实现版本。手写数字识别是指给定一系列的手写数字图片以及对应的数字标签,构建模型进行学习,目标是对于一张新的手写数字图片能够自动识别出对应的数字。图像识别是指利用计算机对图像进行处理,通过模型对其分析和理解,得到图片文件中所写的数字。在人工智能领域,手写数字识别被问题转换为自动分类问题。将0~9之内的10个数字分为10类,通过模型训练,实现对数字图片的分类,间接获取数字图片上的手写数字。...原创 2022-08-17 10:27:22 · 3297 阅读 · 0 评论 -
【深度学习案例】手写数字项目实现-1.数据集介绍
该项目通过手写数字识别实现简单的深度学习模型训练实现,充分认识深度学习项目构建过程,提供Matlab以及Python实现版本。手写数字识别是指给定一系列的手写数字图片以及对应的数字标签,构建模型进行学习,目标是对于一张新的手写数字图片能够自动识别出对应的数字。图像识别是指利用计算机对图像进行处理,通过模型对其分析和理解,得到图片文件中所写的数字。在人工智能领域,手写数字识别被问题转换为自动分类问题。将0~9之内的10个数字分为10类,通过模型训练,实现对数字图片的分类,间接获取数字图片上的手写数字。...原创 2022-08-16 20:16:11 · 3181 阅读 · 0 评论