Description
You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.
We will ask you to perfrom some instructions of the following form:
- CHANGE i ti : change the cost of the i-th edge to ti
or - QUERY a b : ask for the maximum edge cost on the path from node a to node b
题意: 给一棵树,边有权,两种操作:1)修改一条边的权值 2) 询问某条路径上的最大边权
解法:树链剖分入门模板题,剖分后,对于每个询问,变成了求logN条线段上的最大值,很明显可以用线段树解决,复杂度为OlogNlogN
代码:280MS
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<iostream>
#include<stdlib.h>
#include<set>
#include<map>
#include<queue>
#include<vector>
#include<bitset>
#pragma comment(linker, "/STACK:1024000000,1024000000")
template <class T>
bool scanff(T &ret){ //Faster Input
char c; int sgn; T bit=0.1;
if(c=getchar(),c==EOF) return 0;
while(c!='-'&&c!='.'&&(c<'0'||c>'9')) c=getchar();
sgn=(c=='-')?-1:1;
ret=(c=='-')?0:(c-'0');
while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0');
if(c==' '||c=='\n'){ ret*=sgn; return 1; }
while(c=getchar(),c>='0'&&c<='9') ret+=(c-'0')*bit,bit/=10;
ret*=sgn;
return 1;
}
#define inf 1073741823
#define llinf 4611686018427387903LL
#define PI acos(-1.0)
#define lth (th<<1)
#define rth (th<<1|1)
#define rep(i,a,b) for(int i=int(a);i<=int(b);i++)
#define drep(i,a,b) for(int i=int(a);i>=int(b);i--)
#define gson(i,root) for(int i=ptx[root];~i;i=ed[i].next)
#define tdata int testnum;scanff(testnum);for(int cas=1;cas<=testnum;cas++)
#define mem(x,val) memset(x,val,sizeof(x))
#define mkp(a,b) make_pair(a,b)
#define findx(x) lower_bound(b+1,b+1+bn,x)-b
#define pb(x) push_back(x)
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
#define NN 100010
int ptx[NN],lnum;
struct edge{
int v,next,w;
edge(){}
edge(int v,int next,int w){
this->v=v;
this->next=next;
this->w=w;
}
}ed[NN*2];
void addline(int x,int y,int w){
ed[lnum]=edge(y,ptx[x],w);
ptx[x]=lnum++;
}
int sz[NN],son[NN],f[NN],dep[NN];
int tid[NN],tn;
int top[NN];
int a[NN],b[NN];
int getson(int x,int fa,int d){
int maxval=0;
//这些数据千万不要忘记初始化,错了一万遍
son[x]=0;
sz[x]=1;
f[x]=fa;
dep[x]=dep[fa]+1;
gson(i,x){
int y=ed[i].v;
if(y==fa)continue;
sz[x]+=getson(y,x,d+1);
a[y]=ed[i].w;
if(sz[y]>maxval)
maxval=sz[y],son[x]=y;
}
return sz[x];
}
void getchain(int r,int x,int fa){
tid[x]=++tn;
top[x]=r;
if(son[x])getchain(r,son[x],x);
gson(i,x){
int y=ed[i].v;
if(y==fa||y==son[x])continue;
getchain(y,y,x);
}
}
struct segtree{
int val[NN*16],m;
void init(int n){
for(m=1;m<n+3;m<<=1);
rep(i,1,m<<1)val[i]=0;
rep(i,1,n)val[i+m]=b[i];
drep(i,m-1,1)val[i]=max(val[i<<1],val[i<<1|1]);
}
void update(int pos,int v){
val[pos+m]=v;
for(int i=(pos+m)>>1;i;i>>=1)
val[i]=max(val[i<<1],val[i<<1|1]);
}
int query(int l,int r){
if(l>r)return -inf;
int ans=-inf;
for(l=l+m-1,r=r+m+1;l^r^1;l>>=1,r>>=1){
if(~l&1)ans=max(ans,val[l^1]);
if(r&1) ans=max(ans,val[r^1]);
}
return ans;
}
}st;
char op[11];
int main(){
int x,y,w,n;
tdata{
if(cas>1)printf("\n");
scanff(n);
lnum=tn=0; //tn记得初始化
rep(i,1,n)ptx[i]=-1;
rep(i,1,n-1){
scanff(x);scanff(y);scanff(w);
addline(x,y,w);addline(y,x,w);
}
getson(1,0,0);
getchain(1,1,0);
rep(i,1,n)b[tid[i]]=a[i];
st.init(n);
while(scanf("%s",op)!=EOF){
if(op[0]=='C'){
scanff(x);scanff(y);
int u=ed[x*2-2].v;//需要找到第I条边所连着的更深的点
int v=ed[x*2-1].v;
if(dep[u]<dep[v])swap(u,v);
st.update(tid[u],y);
}
if(op[0]=='Q'){
scanff(x);scanff(y);
int ans=-inf;
while(top[x]!=top[y]){
if(dep[top[x]]<dep[top[y]])swap(x,y);
ans=max(ans,st.query(tid[top[x]],tid[x]));
x=f[top[x]];
}
if(x!=y){
if(dep[x]>dep[y])swap(x,y);//x即lca,统计边时不要计入
ans=max(ans,st.query(tid[x]+1,tid[y]));
}
printf("%d\n",ans);
}
if(op[0]=='D')break;
}
}
}