cs231n--CNN 卷积神经网络

这篇博客探讨了卷积神经网络(CNN)的基本结构,包括卷积层和全连接层。卷积层通过卷积核在图像上滑动,进行点乘运算并加上偏置,生成激活映射。通过堆叠多个卷积核可以增加输出深度。网络中还涉及步长和填充的选择,以控制输出尺寸和感受野。最大池化层用于下采样,而全连接层则将特征展平并进行普通神经网络运算。文章强调了CNN在图像处理中的应用,以及如何通过降采样和池化来处理大型图像。
摘要由CSDN通过智能技术生成

CNN Convolutional Neural Networks

20221031102346

Convolution Layer

Fully Connnected Layer
全连接层,将一张32323的图像展开成一个向量,然后进行向量的乘法

20221031102809

Convolution Layer

20221031102950

卷积核按照一定的规则在图像上进行滑动,卷积核的深度要和输入居真的深度相同。

20221031103305

计算时,使用卷积核和被卷积区域进行点乘,再加上一个 bias w T x + b w^T x +b wTx+b

使用一个卷积核得到一个深度为1的结果,并且activation map的大小变小了。
20221031103835

我们可以使用多个卷积核,将结果进行堆叠,拓展结果的深度
20221031104052

20221031104116

ConvNet 是一系列的卷积层,其中插入了激活函数
20221031104224

20221031104745

20221031105145

在卷积核进行滑动的时候,选择一个合适的步长 stride 进行滑动,会影响最终输出的结果的大小。
20221031105253

然而就算stride 为1的时候,得到的结果尺寸也会比输入更小,因此要进行填充。
20221031105453

如果不行近填充,尺寸缩进速度很快,工作效果并不好。

20221031105546

receptive field 感受野

卷积核是K大小的,那么结果中 K大小的区域涉及到输入中 KK ( row KK ,col K*K ) 大小的感受野

对于一个output区域,每经过一个卷积层,会将感受野的尺寸扩充K-1倍, 因此经过L层,感受野的尺寸扩充到 1+L*(K-1) 倍
20221031111148

对于更大的图像,如果我们想让output涉及到,看到整个图像,我们需要经过很多层的卷积

解决方案“降采样”

Solution: Strided Convolution

20221031111633

20221031112747

Pooling layer

20221031113241

20221031113354

max pooling 不需要学习参数,引入空间不变性

全连接层,就是一个普通的神经网络层
20221031113604

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值