高数线代知识点目录

高数线代知识点目录

泰勒展开

e x = 1 + x + x 2 2 ! + x 3 3 ! + … + x n n ! + O ( x n ) s i n x = x − x 3 3 ! + x 5 5 ! − … + ( − 1 ) n x 2 n − 1 ( 2 n + 1 ) ! + O ( x 2 n + 1 ) c o s x = 1 − x 2 2 ! + x 4 4 ! − … + ( − 1 ) n x 2 n ( 2 n ) ! + O ( x 2 n ) 1 1 + x = 1 − x + x 2 − … + ( − 1 ) n x n + O ( x n ) l n ( 1 + x ) = x − x 2 2 + x 3 3 − … + ( − 1 ) n x n ( n ) ! + O ( x n ) ( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + … + α ( α − 1 ) … ( α − n + 1 ) n ! x n + O ( x n ) t a n x = x + 1 3 x 3 + O ( x 3 ) a r c t a n x = x − 1 3 x 3 + 1 5 x 5 + O ( x 6 ) a r c s i n x = x + 1 6 x 3 + O ( x 3 ) e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+…+\frac{x^n}{n!}+O(x^n)\\ sinx=x-\frac{x^3}{3!}+\frac{x^5}{5!}-…+\frac{(-1)^nx^{2n-1}}{(2n+1)!}+O(x^{2n+1})\\ cosx=1-\frac{x^2}{2!}+\frac{x^4}{4!}-…+\frac{(-1)^nx^{2n}}{(2n)!}+O(x^{2n})\\ \frac{1}{1+x}=1-x+x^2-…+(-1)^nx^n+O(x^n)\\ ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-…+\frac{(-1)^nx^{n}}{(n)!}+O(x^n)\\ (1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+…+\frac{\alpha(\alpha-1)…(\alpha-n+1)}{n!}x^n+O(x^n)\\ tanx=x+\frac 13x^3+O(x^3)\\ arctanx=x-\frac 13x^3+\frac 15x^5+O(x^6)\\ arcsinx=x+\frac 16x^3+O(x^3)\\ ex=1+x+2!x2+3!x3++n!xn+O(xn)sinx=x3!x3+5!x5+(2n+1)!(1)nx2n1+O(x2n+1)cosx=12!x2+4!x4+(2n)!(1)nx2n+O(x2n)1+x1=1x+x2+(1)nxn+O(xn)ln(1+x)=x2x2+3x3+(n)!(1)nxn+O(xn)(1+x)α=1+αx+2!α(α1)x2++n!α(α1)(αn+1)xn+O(xn)tanx=x+31x3+O(x3)arctanx=x31x3+51x5+O(x6)arcsinx=x+61x3+O(x3)

不定积分

∫ d x x 2 + a 2 = l n ( x + x 2 + a 2 ) + C \int \frac {dx}{\sqrt {x^2+a^2}}=ln(x+\sqrt{x^2+a^2})+C x2+a2 dx=ln(x+x2+a2 )+C

小知识点

需要特别记住的奇函数

l n ( x + 1 + x 2 ) 是关于 x 的奇函数 ln(x+\sqrt{1+x^2})是关于x的奇函数 ln(x+1+x2 )是关于x的奇函数

等比数列/等差数列

等比数列通项: a n = a 1 q n − 1 等比数列求和公式: S n = a 1 − a n q 1 − q , S n = a 1 ( 1 − q n ) 1 − q 等差数列通项: a n = a 1 + ( n − 1 ) d 等差数列求和公式: S n = ( a 1 + a n ) n 2 , S n = n a 1 + n ( n − 1 ) d 2 等比数列通项:a_n=a_1q^{n-1}\\ 等比数列求和公式:S_n=\frac{a_1-a_nq}{1-q},S_n=\frac{a_1(1-q^n)}{1-q}\\ 等差数列通项:a_n=a_1+(n-1)d\\ 等差数列求和公式:S_n=\frac{(a_1+a_n)n}{2},S_n=na_1+\frac{n(n-1)d}{2} 等比数列通项:an=a1qn1等比数列求和公式:Sn=1qa1anq,Sn=1qa1(1qn)等差数列通项:an=a1+(n1)d等差数列求和公式:Sn=2(a1+an)n,Sn=na1+2n(n1)d

解题反例总结

二阶导大于 0 的函数 : f ( x ) = − l n x < 递减 > ,   f ( x ) = 1 x < 递减 > ,   f ( x ) = x 2 ( x > 0 ) < 递增 > ; 一阶导大于原函数,都大于 0 即 f ′ ( x ) > f ( x ) > 0 : f ( x ) = e 2 x 二阶导大于0的函数:f(x)=-lnx<递减>,\ f(x)=\frac 1x<递减>,\ f(x)=x^2(x>0)<递增>;\\ 一阶导大于原函数,都大于0即f'(x)>f(x)>0:f(x)=e^{2x} 二阶导大于0的函数:f(x)=lnx<递减>, f(x)=x1<递减>, f(x)=x2(x>0)<递增>;一阶导大于原函数,都大于0f(x)>f(x)>0:f(x)=e2x

导数定义与计算

某一点的可导性,多利用导数定义

分母趋向0,极限要存在,分子也要趋向0,通常用于导数定义式中确定未知量
函数连续可导——>函数可导,导函数连续
取大头

若 a 1 , a 2 , a 3 … a n > 0 , 则 lim ⁡ x − > ∞ a 1 + a 2 + a 3 + … a n n = m a x { a 1 , a 2 , a 3 , … a n } n 例如: lim ⁡ x − > ∞ 2 3 + 3 3 n = 3 ; 若a_1,a_2,a_3…a_n>0,则\lim_{x->\infty}\sqrt[n]{a_1+a_2+a_3+…a_n}=\sqrt[n]{max\{a_1,a_2,a_3,…a_n\}}\\ 例如:\lim_{x->\infty}\sqrt[n]{2^3+3^3}=3; a1,a2,a3an>0,x>limna1+a2+a3+an =nmax{a1,a2,a3,an} 例如:x>limn23+33 =3;

绝对值函数的可导性,找绝对值函数部分的零点

判断抽象函数可导性,利用条件凑导数定义式

抽象函数的极限计算,慎用洛必达

有理函数高阶导数计算,先拆分再求导

正整数幂函数乘以其他函数求高阶导数,考虑莱布尼茨法则

常见函数的高阶导数,泰勒公式帮你忙

导数的应用

可导函数的单调性与极值,求导判断正负

隐函数的极值问题,一阶不够二阶来凑

二阶导大于0,极小值;二阶导小于0,极大值。

多项式函数的极值点判别,求零点

s t e p 1 :令 f ( x ) = 0 找出它所有零点 s t e p 2 :观察零点的重数,偶数重的零点是极值点 , 如 x = 2 是 x 2 ( x − 1 ) 3 ( x − 2 ) 4 的极值点 s t e p 3 :相邻两个零点之间一定有且仅有一个极值点 s t e p 4 :把零点中的极值点以及非零点之间的极值点的个数加起来就结束了。 step1:令f(x)=0找出它所有零点\\ step2:观察零点的重数,偶数重的零点是极值点,如x=2是x^2(x-1)^3(x-2)^4的极值点\\ step3:相邻两个零点之间一定有且仅有一个极值点\\ step4:把零点中的极值点以及非零点之间的极值点的个数加起来就结束了。 step1:令f(x)=0找出它所有零点step2:观察零点的重数,偶数重的零点是极值点,x=2x2(x1)3(x2)4的极值点step3:相邻两个零点之间一定有且仅有一个极值点step4:把零点中的极值点以及非零点之间的极值点的个数加起来就结束了。

多项式函数的拐点,求零点和驻点

s t e p 1 :令 f ( x ) = 0 找出它所有零点 s t e p 2 :观察零点的重数,超过 1 重且重数为奇数的一定是拐点 , 如 x = 1 是 x ( x − 1 ) 3 ( x − 2 ) 4 的拐点 s t e p 3 :找驻点。首先零点重数超过 1 的一定是驻点,比如 1 , 2 是 x ( x − 1 ) 3 ( x − 2 ) 4 的驻点, 然后相邻两个零点之间一定有且仅有一个驻点 , 0 和 1 之间有一个驻点 x 1 , 1 和 2 之间有一个驻点 x 2 s t e p 4 :把函数所有的驻点排序,比如 x ( x − 1 ) 3 ( x − 2 ) 4 有驻点 x 1 , 1 , x 2 , 2 。 s t e p 5 :两个驻点之间一定有且仅有一个拐点,比如驻点 x 1 , 1 , x 2 , 2 之间有 3 个拐点 加上一开始的 1 是拐点,函数 x ( x − 1 ) 3 ( x − 2 ) 4 一共有 4 个拐点 step1:令f(x)=0找出它所有零点\\ step2:观察零点的重数,超过1重且重数为奇数的一定是拐点,如x=1是x(x-1)^3(x-2)^4的拐点\\ step3:找驻点。首先零点重数超过1的一定是驻点,比如1,2是x(x-1)^3(x-2)^4的驻点,\\然后相邻两个零点之间一定有且仅有一个驻点,0和1之间有一个驻点x_1,1和2之间有一个驻点x_2\\ step4:把函数所有的驻点排序,比如x(x-1)^3(x-2)^4有驻点x_1,1,x_2,2。\\ step5:两个驻点之间一定有且仅有一个拐点,比如驻点x_1,1,x_2,2之间有3个拐点\\加上一开始的1是拐点,函数x(x-1)^3(x-2)^4一共有4个拐点 step1:令f(x)=0找出它所有零点step2:观察零点的重数,超过1重且重数为奇数的一定是拐点,x=1x(x1)3(x2)4的拐点step3:找驻点。首先零点重数超过1的一定是驻点,比如12x(x1)3(x2)4的驻点,然后相邻两个零点之间一定有且仅有一个驻点,01之间有一个驻点x1,12之间有一个驻点x2step4:把函数所有的驻点排序,比如x(x1)3(x2)4有驻点x1,1,x2,2step5:两个驻点之间一定有且仅有一个拐点,比如驻点x1,1,x2,2之间有3个拐点加上一开始的1是拐点,函数x(x1)3(x2)4一共有4个拐点

定积分的几何应用

平面图形的面积

题目条件是一个函数表达式,直接对函数绝对值使用定积分
题目条件是一个参数方程,看作隐函数积分
题目条件是一个极坐标方程,平面图形为“扇形”,套用面积公式

旋转体体积

一般函数曲线绕与自变量坐标轴平行的直线旋转,采用叠片法

以 y = f ( x ) ( a ≤ x ≤ b ) 绕 x 轴旋转为例,那么微元可以选取为 π f 2 ( x ) d x , 因此旋转体体积就是: ∫ a b π f 2 ( x ) d x 绕直线 y = y 0 旋转的体积为: ∫ a b π [ f ( x ) − y 0 ] 2 d x 以y=f(x)(a\le x\le b)绕x轴旋转为例,那么微元可以选取为\pi f^2(x)dx,因此旋转体体积就是:\\ \int_a^b\pi f^2(x)dx\\ 绕直线y=y_0旋转的体积为:\int_a^b\pi [f(x)-y_0]^2dx y=f(x)(axb)x轴旋转为例,那么微元可以选取为πf2(x)dx,因此旋转体体积就是:abπf2(x)dx绕直线y=y0旋转的体积为:abπ[f(x)y0]2dx

一般函数曲线绕与自变量坐标轴垂直的直线旋转,采用柱壳法

以 y = f ( x ) ( a ≤ x ≤ b ) 绕 y 轴旋转为例,那么微元可以选取为 2 π ∣ x ∣ ∣ f ( x ) ∣ d x , 因此旋转体体积就是: ∫ a b 2 π ∣ x ∣ ∣ f ( x ) ∣ d x 若是绕 x = x 0 旋转 , V = ∫ a b 2 π ∣ x − x 0 ∣ ∣ f ( x ) ∣ d x 以y=f(x)(a\le x\le b)绕y轴旋转为例,那么微元可以选取为2\pi |x| |f(x)|dx,因此旋转体体积就是:\\ \int_a^b 2\pi |x| |f(x)|dx\\若是绕x=x_0旋转,V=\int_a^b 2\pi |x-x_0| |f(x)|dx\\ y=f(x)(axb)y轴旋转为例,那么微元可以选取为2πx∣∣f(x)dx,因此旋转体体积就是:ab2πx∣∣f(x)dx若是绕x=x0旋转,V=ab2πxx0∣∣f(x)dx

曲线的弧长
题目条件是一个函数表达式,求弧长

弧微分形式为: d s = 1 + ( d y d x ) 2 d x = 1 + f ′ 2 ( x ) d x 弧长: ∫ a b d s = ∫ a b 1 + f ′ 2 ( x ) d x 弧微分形式为:ds=\sqrt{1+(\frac{dy}{dx})^2}dx=\sqrt{1+f'^2(x)}dx\\ 弧长:\int_a^bds=\int_a^b\sqrt{1+f'^2(x)}dx\\ 弧微分形式为:ds=1+(dxdy)2 dx=1+f′2(x) dx弧长:abds=ab1+f′2(x) dx

题目条件是一个参数方程,求弧长

弧微分形式为: d s = x ′ 2 ( t ) + y ′ 2 ( t ) d t 弧长: ∫ a b d s = ∫ a b x ′ 2 ( t ) + y ′ 2 ( t ) d t 弧微分形式为:ds=\sqrt{x'^2(t)+y'^2(t)}dt\\ 弧长:\int_a^bds=\int_a^b\sqrt{x'^2(t)+y'^2(t)}dt\\ 弧微分形式为:ds=x′2(t)+y′2(t) dt弧长:abds=abx′2(t)+y′2(t) dt

题目条件是一个极坐标方程,求弧长

弧微分形式为: d s = ( d x d θ ) 2 + ( d y d θ ) 2 d θ = ( d r d θ ) 2 + r 2 d θ 弧长: ∫ α β d s = ∫ α β ( d r d θ ) 2 + r 2 d θ 弧微分形式为:ds=\sqrt{(\frac{dx}{d\theta})^2+(\frac{dy}{d\theta})^2}d\theta=\sqrt{(\frac{dr}{d\theta})^2+r^2}d\theta\\ 弧长:\int_\alpha^\beta ds=\int_\alpha^\beta\sqrt{(\frac{dr}{d\theta})^2+r^2}d\theta\\ 弧微分形式为:ds=(dθdx)2+(dθdy)2 dθ=(dθdr)2+r2 dθ弧长:αβds=αβ(dθdr)2+r2 dθ

曲线的曲率

题目条件是一个函数表达式,求曲率

曲线方程中的变量具有函数关系,即当 y 和 x 具有函数关系 y = f ( x ) ( a ≤ x ≤ b ) . 则 t a n θ = y ′ , 那么 d θ = y ′ ′ 1 + y ′ 2 d x , 则曲率公式为 K = ∣ d θ d s ∣ = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 2 . 根据这个公式可以得出,在一个点相切的两条曲线如果曲率相等,那么二阶导数的绝对值相等 曲线方程中的变量具有函数关系,即当y和x具有函数关系y=f(x)(a\le x\le b). \\ 则tan\theta=y',那么d\theta=\frac{y''}{1+y'^2}dx,则曲率公式为K=|\frac{d\theta}{ds}|=\frac{|y''|}{(1+y'^2)^\frac 32}.\\ 根据这个公式可以得出,在一个点相切的两条曲线如果曲率相等,那么二阶导数的绝对值相等 曲线方程中的变量具有函数关系,即当yx具有函数关系y=f(x)(axb).tanθ=y,那么dθ=1+y′2y′′dx,则曲率公式为K=dsdθ=(1+y′2)23y′′.根据这个公式可以得出,在一个点相切的两条曲线如果曲率相等,那么二阶导数的绝对值相等

题目条件是一个参数方程,求曲率

曲线方程中的变量具有函数关系,即当 y 和 x 具有参数关系 { x = x ( t ) y = y ( t ) ( a ≤ t ≤ b ) . 则 t a n θ = y ′ x ′ , 那么 d θ = y ′ ′ x ′ − x ′ ′ y ′ x ′ 2 + y ′ 2 d x , 则曲率公式为 K = ∣ d θ d s ∣ = y ′ ′ x ′ − x ′ ′ y ′ ( x ′ 2 + y ′ 2 ) 3 2 . 根据这个公式可以得出,在一个点相切的两条曲线如果曲率相等,那么二阶导数的绝对值相等 曲线方程中的变量具有函数关系,即当y和x具有参数关系\begin{cases}x=x(t)\\y=y(t)\end{cases}(a\le t\le b). \\ 则tan\theta=\frac {y'}{x'},那么d\theta=\frac{y''x'-x''y'}{x'^2+y'^2}dx,则曲率公式为K=|\frac{d\theta}{ds}|=\frac{y''x'-x''y'}{(x'^2+y'^2)^\frac 32}.\\ 根据这个公式可以得出,在一个点相切的两条曲线如果曲率相等,那么二阶导数的绝对值相等 曲线方程中的变量具有函数关系,即当yx具有参数关系{x=x(t)y=y(t)(atb).tanθ=xy,那么dθ=x′2+y′2y′′xx′′ydx,则曲率公式为K=dsdθ=(x′2+y′2)23y′′xx′′y.根据这个公式可以得出,在一个点相切的两条曲线如果曲率相等,那么二阶导数的绝对值相等

与曲率圆有关的问题

曲率圆与曲线相切,半径为曲线在切点处的曲率半径,凹凸性与曲线在该切点的凹凸性一致,利用这些性质可解决对应的问题。同时不要忘了他们的几何意义,通过几何意义有时候画图就能很快的解决问题。

旋转体侧面积

题目条件是一个函数表达式,求侧面积

绕 x 轴旋转形成的旋转体体积: S = ∫ a b 2 π ∣ y ∣ d s = ∫ a b 2 π ∣ f ( x ) ∣ 1 + f ′ 2 ( x ) d x 绕直线 y = y 0 形成的旋转体侧面积为: S = ∫ a b 2 π ∣ y ∣ d s = ∫ a b 2 π ∣ f ( x 0 ) − y 0 ∣ 1 + f ′ 2 ( x ) d x 绕x轴旋转形成的旋转体体积:S=\int_a^b2\pi|y|ds=\int_a^b2\pi|f(x)|\sqrt{1+f'^2(x)}dx\\ 绕直线y=y_0形成的旋转体侧面积为:S=\int_a^b2\pi|y|ds=\int_a^b2\pi|f(x_0)-y_0|\sqrt{1+f'^2(x)}dx\\ x轴旋转形成的旋转体体积:S=ab2πyds=ab2πf(x)1+f′2(x) dx绕直线y=y0形成的旋转体侧面积为:S=ab2πyds=ab2πf(x0)y01+f′2(x) dx

题目条件是一个参数方程,求侧面积

绕 x 轴旋转形成的旋转体体积: S = ∫ a b 2 π ∣ y ∣ d s = ∫ a b 2 π ∣ y ( t ) ∣ x ′ 2 ( t ) + y ′ 2 ( t ) d t 绕直线 y = y 0 形成的旋转体侧面积为: S = ∫ a b 2 π ∣ y ∣ d s = ∫ a b 2 π ∣ y ( t ) − y 0 ∣ x ′ 2 ( t ) + y ′ 2 ( t ) d t 绕x轴旋转形成的旋转体体积:S=\int_a^b2\pi|y|ds=\int_a^b2\pi|y(t)|\sqrt{x'^2(t)+y'^2(t)}dt\\ 绕直线y=y_0形成的旋转体侧面积为:S=\int_a^b2\pi|y|ds=\int_a^b2\pi|y(t)-y_0|\sqrt{x'^2(t)+y'^2(t)}dt\\ x轴旋转形成的旋转体体积:S=ab2πyds=ab2πy(t)x′2(t)+y′2(t) dt绕直线y=y0形成的旋转体侧面积为:S=ab2πyds=ab2πy(t)y0x′2(t)+y′2(t) dt

题目条件是一个极坐标方程,求侧面积

绕极轴旋转形成的旋转体体积: S = ∫ α β 2 π ∣ y ∣ d s = ∫ α β 2 π ∣ r s i n θ ∣ ( d r d θ ) 2 + r 2 d θ 绕极轴旋转形成的旋转体体积:S=\int_\alpha^\beta2\pi|y|ds=\int_\alpha^\beta2\pi|rsin\theta|\sqrt{(\frac{dr}{d\theta})^2+r^2}d\theta\\ 绕极轴旋转形成的旋转体体积:S=αβ2πyds=αβ2πrsinθ(dθdr)2+r2 dθ

定积分的物理应用

形心公式: x ‾ = ∫ x d σ ∫ d σ , y ‾ = ∫ y d σ ∫ d σ , z ‾ = ∫ z d σ ∫ d σ 质心公式: x ‾ = ∫ x ρ d σ ∫ ρ d σ , y ‾ = ∫ y ρ d σ ∫ ρ d σ , z ‾ = ∫ z ρ d σ ∫ ρ d σ 弧长公式: s = ∫ a b 1 + y ′ 2 d x 水压力: d F = P d S , P = ρ g h 万有引力: C M m r 2 , M 和 m 分别是两个物体的质量, r 它们之间的距离, C 是万有引力常数 库仑定律: k q 1 q 2 r 2 , q 1 q 2 是两个电荷的带电量, r 是它们之间的距离 做功: d W = x d F , d W = F d x 形心公式:\overline x=\frac {\int xd\sigma}{\int d\sigma},\overline y=\frac {\int yd\sigma}{\int d\sigma},\overline z=\frac {\int zd\sigma}{\int d\sigma}\\ 质心公式:\overline x=\frac {\int x\rho d\sigma}{\int \rho d\sigma},\overline y=\frac {\int y\rho d\sigma}{\int \rho d\sigma},\overline z=\frac {\int z\rho d\sigma}{\int \rho d\sigma}\\ 弧长公式:s=\int_a^b\sqrt {1+y'^2}dx\\ 水压力:dF=PdS,P=\rho gh\\ 万有引力:\frac{CMm}{r^2},M和m分别是两个物体的质量,r它们之间的距离,C是万有引力常数\\ 库仑定律:\frac{kq_1q_2}{r^2},q_1q_2是两个电荷的带电量,r是它们之间的距离\\ 做功:dW=xdF,dW=Fdx 形心公式:x=dσxdσ,y=dσydσ,z=dσzdσ质心公式:x=ρdσxρdσ,y=ρdσyρdσ,z=ρdσzρdσ弧长公式:s=ab1+y′2 dx水压力:dF=PdS,P=ρgh万有引力:r2CMm,Mm分别是两个物体的质量,r它们之间的距离,C是万有引力常数库仑定律:r2kq1q2,q1q2是两个电荷的带电量,r是它们之间的距离做功:dW=xdF,dW=Fdx

多元函数微分学

二元函数的极限

使用一元函数的计算方法计算极限
利用放缩求极限(常用)

x 2 x 2 + y 2 ≤ 1 , y 2 x 2 + y 2 ≤ 1 ∣ x ∣ ∣ x ∣ + ∣ y ∣ ≤ 1 , ∣ y ∣ ∣ x ∣ + ∣ y ∣ ≤ 1 ∣ x ∣ x 2 + y 2 ≤ 1 , ∣ x ∣ x 2 + y 2 ≤ 1 \frac{x^2}{x^2+y^2}\le1,\frac{y^2}{x^2+y^2}\le1\\ \frac{|x|}{|x|+|y|}\le1,\frac{|y|}{|x|+|y|}\le1\\ \frac{|x|}{\sqrt{x^2+y^2}}\le1,\frac{|x|}{\sqrt{x^2+y^2}}\le1 x2+y2x21,x2+y2y21x+yx1,x+yy1x2+y2 x1,x2+y2 x1

注意易错题: lim ⁡ ( x , y ) − > ( 0 , 0 ) s i n x y x 2 + y 2 , s i n x y 不可直接等价为 x y ,需要分情况讨论 注意易错题:\lim_{(x,y)->(0,0)}\frac{sinxy}{\sqrt{x^2+y^2}},sinxy不可直接等价为xy,需要分情况讨论 注意易错题:(x,y)>(0,0)limx2+y2 sinxy,sinxy不可直接等价为xy,需要分情况讨论

分子分母都是无穷小,(等价后)分母的最低次数高于分子的最低次数则极限必定不存在
分子分母都是无穷小,(等价后)分母的最低次数等于分子的最低次数则极限必定不存在,设y=k(x-x0)+y0检验
分子分母都是无穷小,(等价后)分母的最低次数低于分子的最低次数,若极限存在,必为0

二元函数偏导数

一点处的偏导数,使用定义

如果极限 lim ⁡ Δ x − > 0 f ( x 0 + Δ x , y o ) − f ( x 0 , y 0 ) Δ x 存在,则称 f ( x , y ) 在点 ( x 0 , y 0 ) 关于 x 的偏导数存在 记为 f x ( x 0 , y 0 ) , 或 f x ′ ( x 0 , y 0 ) , α f α x ∣ ( x 0 , y 0 ) 如果极限\lim_{\Delta x->0}\frac{f(x_0+\Delta x,y_o)-f(x_0,y_0)}{\Delta x}存在,则称f(x,y)在点(x_0,y_0)关于x的偏导数存在\\ 记为f_x(x_0,y_0),或f'_x(x_0,y_0),\frac{\alpha f}{\alpha x}|_{(x_0,y_0)} 如果极限Δx>0limΔxf(x0+Δx,yo)f(x0,y0)存在,则称f(x,y)在点(x0,y0)关于x的偏导数存在记为fx(x0,y0),fx(x0,y0),αxαf(x0,y0)

利用偏导数的条件求原函数表达式,看作一元函数的不定积分
复合型的多元函数偏导数,采用链式法则
变量替换后的偏导数计算,变换方程是核心
隐函数求偏导,左右两边直接求

二元函数可微性与全微分

利用凑定义式进行可微性的判别
具体函数的可微性判别,先求偏导数再构造定义
全微分方程,先积分再求导

多元函数的极值

无条件极值

可求一阶二阶偏导的函数极值判别

$$

  1. 先算出f_x,f_y,令f_x,f_y=0求出驻点(x_0,y_0)。\
  2. 再算出f_{xx}和f_{yy}以及f_{xy}\
  3. 代入驻点(x_0,y_0),判断\ f2_{xx}(x_0,y_0)f2_{yy}(x_0,y_0)-f^2_{xy}(x_0,y_0)的正负。\
    若f2_{xx}(x_0,y_0)f2_{yy}(x_0,y_0)-f^2_{xy}(x_0,y_0)<0,不取极值\
    若f2_{xx}(x_0,y_0)f2_{yy}(x_0,y_0)-f^2_{xy}(x_0,y_0)>0,取极值,f_{xx}(x_0,y_0)>0取极小值,反之取极大值\
    若f2_{xx}(x_0,y_0)f2_{yy}(x_0,y_0)-f^2_{xy}(x_0,y_0)=0,不确定,需要另行判断。
    $$
可转化为一元函数的极值问题

思想就是整体换元(当条件方程中有几个复杂的部分包含相同的元素时,将他们整体换元,变成一元函数)

抽象函数的极值判别

条件极值

利用条件消去参数

正常做法,根据对称性把拉格朗日乘子两式相减,可以得到一个等式,根据这个等式可以解得答案。(这个等式一般是两个的乘积=0,然后分别判断等于0的情况是否成立,通常复杂的那一项不成立,有时间就判定一下,没时间就直接写解得)

直接消去方程中的参数

同上一个消参不同的是,这个是把两个等式拉格朗日乘子一部分移到等式右边,然后两式相除,可以消掉一个参数(注意找消了之后式子简洁的消)

利用齐次性化简方程

通常就是xLy+yLx=0(等式分别乘以x和y再相加,可以根据原式化成一个非常简洁的式子)

利用基本不等式求最值

一般利用 均值不等式,柯西不等式

利用二次型的变换解决条件极值
利用约束条件化多元函数为一元函数

当在内部不取极值而在边界取到的话,通常把y变成x的表达式,然后带入约束条件,就变成了一个一元函数求极值的问题。

二重积分

利用二重积分定义计算极限

提出一个1/n²,把内部的i/n替换成x,j/n替换成y。然后极限符号变成二重积分符号,拆成两个积分相乘的时候,积分上下限都是0-1.

利用对称性化简二重积分的计算

奇偶对称性

当被积函数看起来很复杂的时候,可以想想是不是拆分之后有一项甚至多项都是奇函数从而把它去掉

轮换对称性

利用“二重积分的结果是一个数字”来求解某一待定函数的问题

二重积分的计算

选择恰当的坐标系计算二重积分
选择恰当的积分次序/更改积分次序
需要平移极坐标的极点
适用于极坐标计算的积分汇总
需要分割积分区域的题目
区域边界为参数方程的二重积分计算
反常二重积分的计算
利用二重积分计算定积分

微分方程基本理论与常规题

基本概念

微分方程
微分方程的阶
微分方程的解
通解与特解

一阶微分方程

可分离变量的微分方程
齐次微分方程
一阶线性齐次微分方程

一阶线性齐次微分方程: y ′ + P ( x ) y = 0 通解: y = C e − ∫ P ( x ) d x 一阶线性齐次微分方程:y'+P(x)y=0\\ 通解:y=Ce^{-\int P(x)dx} 一阶线性齐次微分方程:y+P(x)y=0通解:y=CeP(x)dx

一阶线性非齐次微分方程

一阶线性非齐次微分方程: y ′ + P ( x ) y = Q ( x ) 通解: y = e − ∫ P ( x ) d x [ ∫ Q ( x ) e ∫ P ( x ) d x + C ] 一阶线性非齐次微分方程:y'+P(x)y=Q(x)\\ 通解:y=e^{-\int P(x)dx}[\int Q(x)e^{\int P(x)}dx+C] 一阶线性非齐次微分方程:y+P(x)y=Q(x)通解:y=eP(x)dx[Q(x)eP(x)dx+C]

伯努利方程

可降阶的高阶微分方程

第一类(常数型)
第二类(不含y型)
第三类(不含x型)66二阶常系数齐次线性微分方程

形如: y ′ ′ + p y ′ + q y = 0 我们将 λ 2 + p λ + q = 0 称作 y ′ ′ + p y ′ + q y = 0 的特征方程 , 而 λ 2 + p λ + q = 0 的根称为特征根 ( 1 ) 若特征方程有两个相异的实根 λ 1 ≠ λ 2 , 则通解为 y = C 1 e λ 1 x + C 2 e λ 2 x ; ( 2 ) 若特征方程有两个相等的实根 λ 1 = λ 2 , 则通解为 y = ( C 1 + C 2 x ) e λ 1 x ; ( 3 ) 若特征方程有一对共轭的虚根 λ 1 , 2 = α + i β , 则通解为 y = e α x ( C 1 s i n β x + C 2 c o s β x ) ; 形如:y''+py'+qy=0\\ 我们将\lambda^2+p\lambda+q=0称作y''+py'+qy=0的特征方程,而\lambda^2+p\lambda+q=0的根称为特征根\\ (1)若特征方程有两个相异的实根\lambda_1\ne\lambda_2,则通解为y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x};\\ (2)若特征方程有两个相等的实根\lambda_1=\lambda_2,则通解为y=(C_1+C_2x)e^{\lambda_1x};\\ (3)若特征方程有一对共轭的虚根\lambda_{1,2}=\alpha+i\beta,则通解为y=e^{\alpha x}(C_1sin\beta x+C_2cos\beta x);\\ 形如:y′′+py+qy=0我们将λ2+pλ+q=0称作y′′+py+qy=0的特征方程,λ2+pλ+q=0的根称为特征根(1)若特征方程有两个相异的实根λ1=λ2,则通解为y=C1eλ1x+C2eλ2x;(2)若特征方程有两个相等的实根λ1=λ2,则通解为y=(C1+C2x)eλ1x;(3)若特征方程有一对共轭的虚根λ1,2=α+iβ,则通解为y=eαx(C1sinβx+C2cosβx);

二阶常系数非齐次线性微分方程

形如: y ′ ′ + p y ′ + q y = f ( x ) 我们要记住:非奇通 = 齐通 + 非奇特,齐通在上一点中介绍过了。现在介绍非奇特 ; ( 1 ) 若 f ( x ) = P n ( x ) e k x ( P n 代表关于 x 的 n 次多项式 )                           当 k 不是特征根时, y ∗ = ( a 0 + a 1 + … + a n x n ) e k x ; 当 k 是单特征根时, y ∗ = x ( a 0 + a 1 + … + a n x n ) e k x ; 当 k 是二重特征根时, y ∗ = x 2 ( a 0 + a 1 + … + a n x n ) e k x ; ( 2 ) 若 f ( x ) = e a x [ P l ( x ) c o s β x + P s ( x ) s i n β x ]           ( P l ( x ) , P s ( x ) 代表关于 x 的 l 次和 s 次多项式 ) 若 α + i β 不是特征根,则令 y ∗ = e a x [ H n ( x ) c o s β x + Q n ( x ) s i n β x ] ; 若 α + i β 是特征根,则令 y ∗ = x e a x [ H n ( x ) c o s β x + Q n ( x ) s i n β x ] 形如:y''+py'+qy=f(x)\\ 我们要记住:非奇通=齐通+非奇特,齐通在上一点中介绍过了。现在介绍非奇特;\\ (1)若f(x)=P_n(x)e^{kx}(P_n代表关于x的n次多项式)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 当k不是特征根时,y*=(a_0+a_1+…+a_nx^n)e^{kx};\\ 当k是单特征根时,y*=x(a_0+a_1+…+a_nx^n)e^{kx};\\ 当k是二重特征根时,y*=x^2 (a_0+a_1+…+a_nx^n)e^{kx};\\ (2)若f(x)=e^{ax}[P_l(x)cos\beta x+P_s(x)sin\beta x]\ \ \ \ \ \ \ \ \ (P_l(x),P_s(x)代表关于x的l次和s次多项式)\\ 若\alpha+i\beta不是特征根,则令y*=e^{ax}[H_n(x)cos\beta x+Q_n(x)sin\beta x];\\ 若\alpha+i\beta是特征根,则令y*=xe^{ax}[H_n(x)cos\beta x+Q_n(x)sin\beta x] 形如:y′′+py+qy=f(x)我们要记住:非奇通=齐通+非奇特,齐通在上一点中介绍过了。现在介绍非奇特;(1)f(x)=Pn(x)ekx(Pn代表关于xn次多项式)                         k不是特征根时,y=(a0+a1++anxn)ekx;k是单特征根时,y=x(a0+a1++anxn)ekx;k是二重特征根时,y=x2(a0+a1++anxn)ekx;(2)f(x)=eax[Pl(x)cosβx+Ps(x)sinβx]         (Pl(x),Ps(x)代表关于xl次和s次多项式)α+iβ不是特征根,则令y=eax[Hn(x)cosβx+Qn(x)sinβx];α+iβ是特征根,则令y=xeax[Hn(x)cosβx+Qn(x)sinβx]

n阶常系数齐次线性微分方程

我们以三阶为例,展示 n 阶常系数齐次线性微分方程的解法——假设微分方程为 f ′ ′ ′ + a y ′ ′ + b y ′ + c y = 0 , 对应的特则方程为 λ 3 + a λ 2 + b λ + c = 0 , 特征根为 λ 1 , λ 2 , λ 3 , 则特征根与通解之间的关系如下: ( 1 ) 若 λ 1 , λ 2 , λ 3 均是实根,且互不相等,则通解为 y = C 1 e λ 1 x + C 2 e λ 2 x + C 3 e λ 3 x ; ( 2 ) 若 λ 1 , λ 2 , λ 3 均是实根,且 λ 1 = λ 2 ≠ λ 3 ,则通解为 y = ( C 1 + C 2 x ) e λ 1 x + C 3 e λ 3 x ; ( 3 ) 若 λ 1 , λ 2 , λ 3 均是实根,且 λ 1 = λ 2 = λ 3 ,则通解为 y = ( C 1 + C 2 x + C 3 x 2 ) e λ 1 x ; ( 4 ) 若 λ 1 , λ 2 , λ 3 中有一个实根 λ 1 ,两个共轭虚根 λ 2 , 3 = α ± i β , 则通解为 y = C 1 e λ 1 x + e α x ( C 2 c o s β x + C 3 s i n β x ) ; 我们以三阶为例,展示n阶常系数齐次线性微分方程的解法——假设微分方程为f'''+ay''+by'+cy=0,\\ 对应的特则方程为\lambda^3+a\lambda^2+b\lambda+c=0,特征根为\lambda_1,\lambda_2,\lambda_3,则特征根与通解之间的关系如下:\\(1)若\lambda_1,\lambda_2,\lambda_3均是实根,且互不相等,则通解为y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}+C_3e^{\lambda_3x};\\ (2)若\lambda_1,\lambda_2,\lambda_3均是实根,且\lambda_1=\lambda_2\ne\lambda_3,则通解为y=(C_1+C_2x)e^{\lambda_1x}+C_3e^{\lambda_3x};\\ (3)若\lambda_1,\lambda_2,\lambda_3均是实根,且\lambda_1=\lambda_2=\lambda_3,则通解为y=(C_1+C_2x+C_3x^2)e^{\lambda_1x};\\ (4)若\lambda_1,\lambda_2,\lambda_3中有一个实根\lambda_1,两个共轭虚根\lambda_{2,3}=\alpha\plusmn i\beta,则通解为y=C_1e^{\lambda_1x}+e^{\alpha x}(C_2cos\beta x+C_3sin\beta x); 我们以三阶为例,展示n阶常系数齐次线性微分方程的解法——假设微分方程为f′′′+ay′′+by+cy=0,对应的特则方程为λ3+aλ2++c=0,特征根为λ1,λ2,λ3,则特征根与通解之间的关系如下:(1)λ1,λ2,λ3均是实根,且互不相等,则通解为y=C1eλ1x+C2eλ2x+C3eλ3x;(2)λ1,λ2,λ3均是实根,且λ1=λ2=λ3,则通解为y=(C1+C2x)eλ1x+C3eλ3x;(3)λ1,λ2,λ3均是实根,且λ1=λ2=λ3,则通解为y=(C1+C2x+C3x2)eλ1x;(4)λ1,λ2,λ3中有一个实根λ1,两个共轭虚根λ23=α±iβ,则通解为y=C1eλ1x+eαx(C2cosβx+C3sinβx);

微分方程解的结构与性质

特征值与特征向量

求特征值与特征向量

具体矩阵的特征值与特征向量
抽象矩阵的特征值与特征向量

判断矩阵能否相似对角化

具体矩阵的判断
抽象矩阵的判断

两个普通矩阵相似的判定

利用相似对角化求高次幂

利用相似对角化转化研究对象

实对称矩阵的相似对角化

具体矩阵
抽象矩阵

二次型

利用正交变换转化二次型为标准型

利用配方法将二次型化为标准型

正定二次型和正定矩阵

矩阵的合同

等价:有相同的秩
相似:特征值相同,行列式相同,迹相同,特征多项式相同。
合同:有相同的正负惯性指数(实对称矩阵)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

独行侠329

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值