描述:我们现在开发的项目中几乎都会有搜索的这个需求,就像我们平时用的百度,谷歌这些都是满足我们平时的搜索需求的。当然在我们的项目中我们不可能利用百度,谷歌的搜索来实现自己项目中的搜索的,这时我们就需要自己进行开发实现这项功能了。那么怎样实现呢,其实现在现在我们有很多成熟的搜索算法,不必自己去研究,只需要自己修改那些大神写的代码就Ok啦。言归正传,下面介入正题。
搜索的功能我是用Lucene.Net和盘古分词二者的结合实现的。后面我会把相关的插件上传大家可以下载。
什么是Lucene.Net:
Lucene.Net是由Java版本的Lucene(卢思银)移植过来的,所有的类和方法都是和Lucene里的几乎一模一样。Lucene.Net只是一个全文检索开发包,不是一个成型的搜索引擎,它的功能就是把数据扔给Lucene.Net,我们查询数据的时候从Lucene.Net查询数据,可以将它看为一个全文检索的数据库。用户可以基于Lucene.Net开发满足自己的需求搜索引擎。Lucene.Net只能对文本信息进行检索,如果不是文本信息就需要转换为文本信息。(比如:要检索Excle文件,就要用NPO把Excle文件读取成字符串,然后把字符串交给Lucene.Net处理)。转换好的字符串Lucene.Net会把它的文本进行切词保存,加快检索速度。因为查询的时候先查询的分词,然后根据所找出对应的分词搜索出对应的用户所要找的内容。
Lucene.Net这样的优点:
①:效率高。
②:匹配程度高(可以嵌入分词的算法提高匹配程度)
什么是分词:
分词是核心算法,搜索引擎内部保存的就是一个个的词,一般英文的分词很容易,按照空格分隔就可以,在汉语中就比较麻烦。比如:把中国位列世界前茅,通过分词就拆分为:中国,位列,世界,前茅,这四个词,拆分的词要和Lunece.Net进行匹配,然后找出相关的内容。当然想那些无意义的词都不参与分词(比如:啊,the).
在Lunece.Net的不同的分词算法就是不同的类。所有的分词算法都是从Lucene.Net中继承,不同的分词算法有着不同的优点
一元分词:
在Lucene.Net 中有一个内置的分词算法,就是一元分词算法(StandardAnalyzer这个类)是将英文按照空格,标点符号等进行分词,将中文按照单个字进行分词,一个汉字算一个词,这种分词现在几乎是不用的。
二元分词:
二元分词算法,是每两个汉字算一个单词,网上的CJKAnalyzer这个类就是实现二元分词的。当然这个在现在的项目中也是几乎不用的。
基于词库的分词算法:
就是基于一个词库进行分词们可以提高分词的成功率,但是效率有点低。有庖丁解牛,盘古分词等。
注意:目前没有三元分词的算法,继一元分词和二元分词就是词库算法。
以上就是分词的基本的概念以及各个分词的优缺点,下面开始进入代码实现
代码实现:
一元分词的代码实现:
/// <summary>
/// 一元分词
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void button1_Click(object sender, EventArgs e)
{
Analyzer analyer = new StandardAnalyzer();//创建一元分词的对象
TokenStream tokenStream = analyer.TokenStream("",new System.IO.StringReader("中国位列世界前茅"));
Lucene.Net.Analysis.Token token = null;
while ((token = tokenStream.Next()) != null)
{
Console.WriteLine(token.TermText());
}
}
效果截图:
二元分词代码实现:
二元分词和一元分词几乎一样就是new的实例不一样。二元分词的使用需要添加两个类
/// <summary>
/// 二元分词
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void button2_Click(object sender, EventArgs e)
{
Analyzer analyer = new CJKAnalyzer();//创建二元分词的对象
TokenStream tokenStream = analyer.TokenStream("", new System.IO.StringReader("河南,雄ci峙天东"));
Lucene.Net.Analysis.Token token = null;
while ((token = tokenStream.Next()) != null)
{
Console.WriteLine(token.TermText());
}
}
CJKAnalyzer 类:
using System.Collections;
using System.IO;
using Lucene.Net.Analysis;
namespace NSharp.SearchEngine.Lucene.Analysis.Cjk
{
public class CJKAnalyzer : Analyzer
{
public static string[] STOP_WORDS = {
"a", "and", "are", "as", "at", "be",
"but", "by", "for", "if", "in",
"into", "is", "it", "no", "not",
"of", "on", "or", "s", "such", "t",
"that", "the", "their", "then",
"there", "these", "they", "this",
"to", "was", "will", "with", "",
"www"
};
private Hashtable stopTable;
public CJKAnalyzer()
{
stopTable = StopFilter.MakeStopSet(STOP_WORDS);
}
public CJKAnalyzer(string[] stopWords)
{
stopTable = StopFilter.MakeStopSet(stopWords);
}
public override TokenStream TokenStream(string fieldName, TextReader reader)
{
TokenStream ts = new CJKTokenizer(reader);
return new StopFilter(ts, stopTable);
}
}
}
CJKTokenizer类:
using System;
using System.Collections;
using System.IO;
using Lucene.Net.Analysis;
namespace NSharp.SearchEngine.Lucene.Analysis.Cjk
{
public class CJKTokenizer:Tokenizer
{
private static int MAX_WORD_LEN = 255;
private static int IO_BUFFER_SIZE = 256;
private int offset = 0;
private int bufferIndex = 0;
private int dataLen = 0;
private char[] buffer = new char[MAX_WORD_LEN];
private char[] ioBuffer = new char[IO_BUFFER_SIZE];
private string tokenType = "word";
private bool preIsTokened = false;
public CJKTokenizer(TextReader reader)
{
input = reader;
}
public override Token Next()
{
int length = 0;
int start = offset;
while (true)
{
char c;
offset++;
if (bufferIndex >= dataLen )
{
if (dataLen==0 || dataLen>=ioBuffer.Length)//Java中read读到最后不会出错,但.Net会,所以此处是为了拦截异常
{
dataLen = input.Read(ioBuffer,0,ioBuffer.Length);
bufferIndex = 0;
}
else
{
dataLen=0;
}
}
if (dataLen ==0)
{
if (length > 0)
{
if (preIsTokened == true)
{
length = 0;
preIsTokened = false;
}
break;
}
else
{
return null;
}
}
else
{
//get current character
c = ioBuffer[bufferIndex++];
}
if (IsAscii(c) || IsHALFWIDTH_AND_FULLWIDTH_FORMS(c))
{
if (IsHALFWIDTH_AND_FULLWIDTH_FORMS(c))
{
int i = (int) c;
i = i - 65248;
c = (char) i;
}
if (char.IsLetterOrDigit(c) || ((c == '_') || (c == '+') || (c == '#')))
{
if (length == 0)
{
start = offset - 1;
}
else if (tokenType == "double")
{
offset--;
bufferIndex--;
tokenType = "single";
if (preIsTokened == true)
{
length = 0;
preIsTokened = false;
break;
}
else
{
break;
}
}
buffer[length++] = char.ToLower(c);
tokenType = "single";
if (length == MAX_WORD_LEN)
{
break;
}
}
else if (length > 0)
{
if (preIsTokened == true)
{
length = 0;
preIsTokened = false;
}
else
{
break;
}
}
}
else
{
if (char.IsLetter(c))
{
if (length == 0)
{
start = offset - 1;
buffer[length++] = c;
tokenType = "double";
}
else
{
if (tokenType == "single")
{
offset--;
bufferIndex--;
//return the previous ASCII characters
break;
}
else
{
buffer[length++] = c;
tokenType = "double";
if (length == 2)
{
offset--;
bufferIndex--;
preIsTokened = true;
break;
}
}
}
}
else if (length > 0)
{
if (preIsTokened == true)
{
// empty the buffer
length = 0;
preIsTokened = false;
}
else
{
break;
}
}
}
}
return new Token(new String(buffer, 0, length), start, start + length,
tokenType
);
}
public bool IsAscii(char c)
{
return c<256 && c>=0;
}
public bool IsHALFWIDTH_AND_FULLWIDTH_FORMS(char c)
{
return c<=0xFFEF && c>=0xFF00;
}
}
}
效果截图:
基于词库的分词:这里展示盘古分词
代码实现:
/// <summary>
/// 盘古分词,这个分词算法分出来的词都是很标准的
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void button3_Click(object sender, EventArgs e)
{
Analyzer analyer = new PanGuAnalyzer();//创建词库
TokenStream tokenStream = analyer.TokenStream("", new System.IO.StringReader("中国位列世界前茅"));
Lucene.Net.Analysis.Token token = null;
while ((token = tokenStream.Next()) != null)
{
Console.WriteLine(token.TermText());
}
}
注意:使用盘古分词需要引入dll文件
效果截图:
以上就是分词的使用,使用分词的目的就是将用户输入的数据进行分割,然后从词库里对比找出的词,最后通过Lucene.Net找出相关的内容,展示给用户。
还有分词算法的是使用多需要用到一个名字为Dict的文件夹以及里面的内容。该文件夹需要刚在项目的根目录下以及项目的bin文件夹下,Dict问价夹之后我会上传供大家下载。
Lucene.Net的使用:
需要创建两个文件夹,一个存放数据(就是用户可能想搜索的内容,文件夹中的文本必须是.txt纯文本的),另一个文件夹用户存放利用Lucene.Net进行转换的文本内容,就是把.txt文本换了另一种格式进行保存,用户所搜索的内容都是在这个文件夹里的。
截图展示:
使用Lucene.Net在项目中还需要引入一个程序集:
截图展示:
现在大家可能有一个问题,就是怎样将txt文本转换为另一种格式呢?实际上转化格式就是添加一个词库,因为我们不能操作txt文件直接利用Lucene进行查询,所以我们需要转换下。添加词库后,存放转换的文件夹会多出几个文件。现在我就给大家用代码实现:
/// <summary>
/// 添加词库
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void button4_Click(object sender, EventArgs e)
{
//下面这个路径我是写死的,文件夹也是手动创建的,大家也可以自己用代码创建
string indexPath = @"C:\Users\Administrator\Desktop\搜索实现\lucenedir";//注意和磁盘上文件夹的大小写一致,否则会报错。将创建的分词内容放在该目录下。
Lucene.Net.Store.FSDirectory directory = FSDirectory.Open(new DirectoryInfo(indexPath), new NativeFSLockFactory());//指定索引文件(打开索引目录) FS指的是就是FileSystem
bool isUpdate = IndexReader.IndexExists(directory);//IndexReader:对索引进行读取的类。该语句的作用:判断索引库文件夹是否存在以及索引特征文件是否存在。
if (isUpdate)
{
//同时只能有一段代码对索引库进行写操作。当使用IndexWriter打开directory时会自动对索引库文件上锁。
//如果索引目录被锁定(比如索引过程中程序异常退出),则首先解锁(提示一下:如果我现在正在写着已经加锁了,但是还没有写完,这时候又来一个请求,那么不就解锁了吗?这个问题后面会解决)
if (IndexWriter.IsLocked(directory))
{
IndexWriter.Unlock(directory);
}
}
IndexWriter writer = new IndexWriter(directory, new PanGuAnalyzer(), !isUpdate, Lucene.Net.Index.IndexWriter.MaxFieldLength.UNLIMITED);//向索引库中写索引。这时在这里加锁。
for (int i = 1; i <= 3; i++)
{
//下面的语句是读取自己所写的词库文件(注意都是纯文本的)
string txt = File.ReadAllText(@"C:\Users\Administrator\Desktop\搜索实现\词库文件\" + i + ".txt", System.Text.Encoding.Default);//注意这个地方的编码
Document document = new Document();//表示一篇文档。
//Field.Store.YES:表示是否存储原值。只有当Field.Store.YES在后面才能用doc.Get("number")取出值来.Field.Index. NOT_ANALYZED:不进行分词保存
document.Add(new Field("number", i.ToString(), Field.Store.YES, Field.Index.NOT_ANALYZED));
//Field.Index. ANALYZED:进行分词保存:也就是要进行全文的字段要设置分词 保存(因为要进行模糊查询)
//Lucene.Net.Documents.Field.TermVector.WITH_POSITIONS_OFFSETS:不仅保存分词还保存分词的距离。
document.Add(new Field("body", txt, Field.Store.YES, Field.Index.ANALYZED, Lucene.Net.Documents.Field.TermVector.WITH_POSITIONS_OFFSETS));
writer.AddDocument(document);
}
writer.Close();//会自动解锁。
directory.Close();//不要忘了Close,否则索引结果搜不到
}
效果展示:
原有的txt文本:
生成的对应的词库:
终于到最后一步搜索了:
代码实现:
public List<ViewModel> ShowSearchContent()
{
string indexPath = @"C:\Users\Administrator\Desktop\搜索实现\lucenedir";//拿到自己创建的存放Lucene.Net文件的路径,下面将分好的词与之对比搜索出相应的内容。
string kw = Request["txtSearch"];//对用户输入的搜索条件进行拆分。这个搜索效果不好,利用盘古分词进进一步拆分用户输入的文本信息
List<string> wordsList = PanGu(kw);//调用盘古分词,对用户输入的内容进行分词
FSDirectory directory = FSDirectory.Open(new DirectoryInfo(indexPath), new NoLockFactory());
IndexReader reader = IndexReader.Open(directory, true);
IndexSearcher searcher = new IndexSearcher(reader);
//搜索条件
PhraseQuery query = new PhraseQuery();//这个类是单个查询,只能查内容里有搜索关键字的文章,或者标题包含关键词的
foreach (var item in wordsList)
{
query.Add(new Term("body",item));//body中含有item的文章
query.SetSlop(100);//多个查询条件的词之间的最大距离.在文章中相隔太远 也就无意义.(例如 “大学生”这个查询条件和"简历"这个查询条件之间如果间隔的词太多也就没有意义了。)
}
TopScoreDocCollector collector = TopScoreDocCollector.create(1000, true);
searcher.Search(query, null, collector);//根据query查询条件进行查询,查询结果放入collector容器
ScoreDoc[] docs = collector.TopDocs(0, collector.GetTotalHits()).scoreDocs;//得到所有查询结果中的文档,GetTotalHits():表示总条数 TopDocs(300, 20);//表示得到300(从300开始),到320(结束)的文档内容.
//可以用来实现分页功能
List<ViewModel> modelList = new List<ViewModel>();
for (int i = 0; i < docs.Length; i++)
{
ViewModel model = new ViewModel();
//
//搜索ScoreDoc[]只能获得文档的id,这样不会把查询结果的Document一次性加载到内存中。降低了内存压力,需要获得文档的详细内容的时候通过searcher.Doc来根据文档id来获得文档的详细内容对象Document.
int docId = docs[i].doc;//得到查询结果文档的id(Lucene内部分配的id)
Document doc = searcher.Doc(docId);//找到文档id对应的文档详细信息
model.number = docId;
model.body = doc.Get("body");
modelList.Add(model);
}
return modelList;
}
/// <summary>
/// /将用户输入的很长的一段话进行盘古分词,根据分过的词进行查找
/// </summary>
/// <returns></returns>
public List<string> PanGu(string words)
{
Analyzer analyer = new PanGuAnalyzer();//创建词库
TokenStream tokenStream = analyer.TokenStream("", new System.IO.StringReader(words));
Lucene.Net.Analysis.Token token = null;
List<string> wordsList = new List<string>();
while ((token = tokenStream.Next()) != null)
{
wordsList.Add(token.TermText());
//Console.WriteLine(token.TermText());
}
return wordsList;
}
效果展示:
到此为止,整个搜索及其相关的知识就完了,收工吃饭,嘿嘿!!