ML in Action Note - Day 3/4 - Logistics Regression

嘻嘻嘻,终于到这一章~自动去找到拟合参数简直太棒了好嘛> w <Logistics Regression:包括Gradient Regression和Stochastic Regression。优点:计算代价不高缺点:容易欠拟合,分类精度可能不高适用于数值型和标称型 在这里,我们需要的函数是,接受所有的输入然后预测出类别。例如,在两个分类情况,输出0或1,这...
摘要由CSDN通过智能技术生成

嘻嘻嘻,终于到这一章~

自动去找到拟合参数简直太棒了好嘛> w <

Logistics Regression:包括Gradient Regression和Stochastic Regression。

优点:计算代价不高

缺点:容易欠拟合,分类精度可能不高

适用于数值型和标称型

 

在这里,我们需要的函数是,接受所有的输入然后预测出类别。例如,在两个分类情况,输出0或1,这一的函数称为Heaviside step function,即单位阶跃函数。这个函数的问题在于:瞬间跳跃过程有时很难处理,于是需要和数学上的sigmoid函数一起合并。

sigmoid函数:\sigma (z)=\frac{1}{1+e^{-z}}

当x为0,sigmoid函数值为0.5。随着x增大,对应的sigmoid值趋近1,随着x减小,sigmoid值趋近0。当横坐标足够大,sigmoid函数看起来像是一个阶跃函数。

所以结合logistics regress和sigmoid得到solution是:每个特征都乘以一个回归系数,把结果总和代入sigmoid函数中,得到一个0~1范围的数值。

sigmoid函数的输入为z:

z=w_0x_0+w1x_1+...+w_nx_n

也就是z=W^{T}X

 

P1:Gradient Regression

找到某个函数的最大值(最小值),最好的方法是沿着函数的梯度方向去找。

函数f(x, y)的梯度▽函数为:\bigtriangledown f(x, y)=\begin{pmatrix} {\frac{\partial f(x,y)}{\partial x}} \\ {\frac{\partial f(x,y)}{\partial y}} \end{pmatrix}

这个梯度意味沿着x的方向移动\frac{\partial f(x,y)}{\partial x},沿着y的方向移动\frac{\partial f(x,y)}{\partial y},其中函数f(x, y)必须要在待计算的点上有定义并且可微。

梯度的方向就是导数最大值的方向,即函数变化率最高的方向。因此,梯度方向可以通过对函数求导得到。

梯度算法一直迭代执行,在每个点会重新计算移动的方向,直到达到某个停止条件位置,比如迭代次数达到某个指定值,或者算法达到某个范围。迭代公式:

梯度上升:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值