35、文本分析与自然语言处理:从数据处理到实际应用

文本分析与自然语言处理:从数据处理到实际应用

1. 数据处理与初步分析

1.1 电影评分数据处理

在处理电影数据时,我们可以使用以下代码对电影评分进行分组求均值并排序输出最低分的前五部电影:

print(movie_data.groupby('title')['rating'].mean()
.sort_values().head())

这段代码首先按电影标题对数据进行分组,然后计算每组评分的均值,接着按评分对结果进行排序,最后输出评分最低的前五部电影。示例输出如下:

title
Magic Christmas Tree, The (1964)               0.5
Vampir (Cuadecuc, vampir) (1971)               0.5
Prisoner of Zenda, The (1979)                  0.5
Late Great Planet Earth, The (1979)            0.5
Last Warrior, The (Last Patrol, The) (2000)    0.5
Name: rating, dtype: float64

1.2 稀疏矩阵与原始文本数据

稀疏矩阵能够以原始文本形式提供大量文本用于分析。例如,在这个例子中使用的 .csv 文件就属于原始文本形式,它们除了进行简单的组织外,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值