- 博客(104)
- 收藏
- 关注
原创 12.10深度学习_经典神经网络_GoogleNet自我理解
通过上述表格,我们可以清楚地看到 GoogLeNet 的前几层是如何逐步处理输入图像的。每个卷积层和池化层都有明确的参数设置,确保了网络能够有效地提取特征并减少计算量。特别是 Inception 模块的设计,通过引入不同大小的卷积核和池化操作,使得网络能够在多个尺度上捕捉图像特征,同时利用1x1卷积核进行降维,减少了参数数量,提高了计算效率。
2024-12-10 19:22:14 977
原创 12.6深度学习_模型优化和迁移_模型移植
Open Neural Network Exchange(ONNX,开放神经网络交换)格式,是一个用于表示深度学习模型的标准,可使模型在不同框架之间进行转移。 ONNX的规范及代码主要由微软,亚马逊 ,Face book 和 IBM等公司共同开发,以开放源代码的方式托管在Github上。目前官方支持加载ONNX模型并进行推理的深度学习框架有: Caffe2, PyTorch, PaddlePaddle, TensorFlow等。
2024-12-08 22:44:04 485
原创 12.4深度学习_模型优化和迁移_awanb、tb
免费,成本低PyTorch: https://pytorch.org/vision/stable/datasets.html开源数据集imagenet:https://image-net.org/Hugging Face数据集:https://huggingface.co/datasetskaggle数据集下载网址:https://www.kaggle.com/datasets各种网站:https://public.roboflow.com/https://zhuanlan.zhihu.com/p/6
2024-12-05 19:37:25 1145
原创 12.2深度学习_视觉处理CNN_池化层、卷积知识
池化层 (Pooling) 降低维度, 缩减模型大小,提高计算速度. 即: 主要对卷积层学习到的特征图进行下采样(SubSampling)处理。池化层主要有两种:最大池化 max pooling最大池化是从每个局部区域中选择最大值作为池化后的值,这样可以保留局部区域中最显著的特征。最大池化在提取图像中的纹理、形状等方面具有很好的效果。平均池化 avgPooling平均池化是将局部区域中的值取平均作为池化后的值,这样可以得到整体特征的平均值。
2024-12-04 09:21:14 1392
原创 12.2深度学习_视觉处理CNN_卷积层
卷积神经网络是深度学习在计算机视觉领域的突破性成果。在计算机视觉领域, 往往我们输入的图像都很大,使用全连接网络的话,计算的代价较高。另外图像也很难保留原有的特征,导致图像处理的准确率不高。 卷积神经网络(Convolutional Neural Network,CNN)是一种专门用于处理具有网格状结构数据的深度学习模型。最初,CNN主要应用于计算机视觉任务,但它的成功启发了在其他领域应用,如自然语言处理等。
2024-12-03 09:16:58 746
原创 12.2深度学习_卷积层输出尺寸的计算公式
,你可以使用类似的公式来计算池化后的输出尺寸。如果你在卷积层后添加了池化层(例如。我们可以根据上述公式计算。假设我们有一个输入张量。
2024-12-02 16:47:43 237
原创 12.2深度学习_项目实战
鲍勃开了自己的手机公司。他想与苹果、三星等大公司展开硬仗。他不知道如何估算自己公司生产的手机的价格。在这个竞争激烈的手机市场,你不能简单地假设事情。为了解决这个问题,他收集了各个公司的手机销售数据。鲍勃想找出手机的特性(例如:RAM、内存等)和售价之间的关系。但他不太擅长机器学习。所以他需要你帮他解决这个问题。在这个问题中,你不需要预测实际价格,而是要预测一个价格区间,表明价格多高。
2024-12-02 09:25:50 1124
原创 11.29深度学习_过拟合欠拟合批量、标准化
在训练深层神经网络时,由于模型参数较多,在数据量不足时很容易过拟合。而正则化技术主要就是用于防止过拟合,提升模型的泛化能力()和鲁棒性(
2024-12-02 09:25:01 883
原创 11.28深度学习_bp算法
梯度下降算法通过不断更新参数来最小化损失函数,是反向传播算法中计算权重调整的基础。在实际应用中,根据数据的规模和计算资源的情况,选择合适的梯度下降方式(批量、随机、小批量)及其变种(如动量法、Adam等)可以显著提高模型训练的效率和效果。 Adam是目前最为流行的优化算法之一,因其稳定性和高效性,广泛应用于各种深度学习模型的训练中。Adam结合了动量法和RMSProp的优点,能够在不同情况下自适应调整学习率,并提供快速且稳定的收敛表现。
2024-11-28 17:14:03 334
原创 11.28深度学习_bp算法实现和详解
网络参数初始化return x网络结构:定义了一个包含两个全连接层的简单神经网络。前向传播:计算输入数据通过网络的输出。损失计算:计算输出与目标之间的均方误差损失。反向传播:计算损失函数关于每个参数的梯度。参数更新:使用优化器更新网络参数。
2024-11-28 11:06:41 1130
原创 11.26深度学习_激活函数-损失函数
当输出层使用softmax多分类时,使用交叉熵损失函数;当输出层使用sigmoid二分类时,使用二分类交叉熵损失函数, 比如在逻辑回归中使用;当功能为线性回归时,使用smooth L1损失函数或均方差损失-L2 loss;
2024-11-27 21:40:59 749
原创 11.26深度学习_神经网络-数据处理
在使用Torch构建网络模型时,每个网络层的参数都有默认的初始化方法,同时还可以通过以上方法来对网络参数进行初始化。
2024-11-27 21:32:12 1183
原创 11.22Pytorch_自动微分
自动微分模块torch.autograd负责自动计算张量操作的梯度,具有自动求导功能。自动微分模块是构成神经网络训练的必要模块,可以实现网络权重参数的更新,使得反向传播算法的实现变得简单而高效。
2024-11-25 20:09:15 468
原创 如何理解tensor中张量的维度
理解dim=0dim=1dim=2以及(x, y, z)的意思,关键在于明确每个维度在张量中的作用。让我们通过具体的例子来详细解释这些概念。
2024-11-24 14:44:07 976
原创 11.20Pytorch_概数和基础
PyTorch是一个基于Python的深度学习框架,它提供了一种灵活、高效、易于学习的方式来实现深度学习模型。PyTorch最初由Facebook开发,被广泛应用于计算机视觉、自然语言处理、语音识别等领域。 PyTorch使用张量(tensor)来表示数据,可以轻松地处理大规模数据集,且可以在GPU上加速。
2024-11-20 18:58:09 1070
原创 11.19机器学习_逻辑回归
逻辑回归(Logistic Regression)是机器学习中的一种分类模型,,虽然名字中带有回归,但是它与回归之间有一定的联系。由于算法的简单和高效,在实际中应用非常广泛。逻辑回归一般用于二分类问题,比如:是好瓜还是坏瓜健康还是不健康可以托付终身还是不可以。
2024-11-19 17:07:10 1160
原创 11.15机器学习_线性回归
十 集成学习方法之随机森林机器学习中有一种大类叫集成学习(Ensemble Learning),集成学习的基本思想就是将多个分类器组合,从而实现一个预测效果更好的集成分类器。集成算法可以说从一方面验证了中国的一句老话:三个臭皮匠,赛过诸葛亮。集成算法大致可以分为:Bagging,Boosting 和 Stacking 三大类型。(1)每次有放回地从训练集中取出 n 个训练样本,组成新的训练集;(2)利用新的训练集,训练得到M个子模型;(3)对于分类问题,采用投票的方法,得票最多子模型的分类类别为最终
2024-11-15 18:54:53 905
原创 11.14机器学习_贝叶斯和决策树
假设现在我们有一个数据集,它由两类数据组成,数据分布如下图所示:也就是说,我们会选择高概率对应的类别。这就是贝叶斯决策理论的核心思想,即选择具有最高概率的决策。已经了解了贝叶斯决策理论的核心思想,那么接下来,就是学习如何计算p1和p2概率。
2024-11-14 20:23:31 1322
原创 11.13机器学习_KNN和模型选择调优
获取数据、数据处理、特征工程后,就可以交给预估器进行机器学习,流程和常用API如下。1.实例化预估器(估计器)对象(estimator), 预估器对象很多,都是estimator的子类(1)用于分类的预估器sklearn.neighbors.KNeighborsClassifier k-近邻sklearn.naive_bayes.MultinomialNB 贝叶斯sklearn.linear_model.LogisticRegressioon 逻辑回归。
2024-11-13 22:22:43 1266
原创 11.12机器学习_特征工程
特征工程:就是对特征进行相关的处理一般使用pandas来进行数据清洗和数据处理、使用sklearn来进行特征工程特征工程是将任意数据(如文本或图像)转换为可用于机器学习的数字特征,比如:字典特征提取(特征离散化)、文本特征提取、图像特征提取。特征工程步骤为:特征提取, 如果不是像dataframe那样的数据,要进行特征提取,比如字典特征提取,文本特征提取无量纲化(预处理)降维底方差过滤特征选择主成分分析-PCA降维。
2024-11-12 20:31:22 1242
原创 11.11机器学习_介绍和定义
Python语言机器学习工具Scikit-learn包括许多智能的机器学习算法的实现Scikit-learn文档完善,容易上手,丰富的API接口函数Scikit-learn官网:https://scikit-learn.org/stable/#Scikit-learn中文文档:https://scikitlearn.com.cn/scikit-learn中文社区数据量小,数据在sklearn库的本地,只要安装了sklearn,不用上网就可以获取数据量大,数据只能通过网络获取。
2024-11-11 17:34:20 980
原创 11.6Open-CV_课堂案例_guI和pymsql
PySimpleGUI 是一个用于简化 GUI 编程的 Python 包,它封装了多种底层 GUI 框架(如 tkinter、Qt、WxPython 等),提供了简单易用的 API。PySimpleGUI 包含了大量的控件(也称为小部件或组件),这些控件可以帮助你快速构建用户界面。是一个用于连接 MySQL 数据库的纯 Python 实现。它允许 Python 程序与 MySQL 数据库进行交互,执行 SQL 查询,并处理结果集。1 准备工作:创建人脸表。
2024-11-06 22:09:13 192
原创 11.5OpenCV_人脸识别
是一个非常流行的 Python 库,专门用于人脸识别任务。它基于 dlib 库和 HOG(Histogram of Oriented Gradients)特征以及深度学习模型,提供了简单易用的接口来进行人脸检测、面部特征点定位和人脸识别。库由 Adam Geitgey 开发,旨在简化人脸识别任务,使其更加容易上手。主要功能人脸检测检测图像中的人脸位置。支持使用 HOG 特征或 CNN(卷积神经网络)进行人脸检测。面部特征点定位检测人脸上的关键特征点(如眼睛、鼻子、嘴巴等)。人脸识别。
2024-11-05 18:37:39 575
原创 11.1OpenCV_图像预处理
在计算机视觉和图像处理领域,图像预处理是一个重要的步骤,它能够提高后续处理(如特征提取、目标检测等)的准确性和效率。
2024-11-01 16:26:50 1316
原创 10.31OpenCV新手级入门
OpenCV其实就是一堆C和C++语言的源代码文件,这些源代码文件中实现了许多常用的计算机视觉算法。是 OpenCV 库中的一个函数,用于创建一个命名窗口,以便在该窗口中显示图像或进行其他图形操作。这个函数在处理图像和视频时非常有用,尤其是在开发基于图像处理的应用程序时。:OpenCV 是计算机视觉领域的标准库之一,广泛应用于图像识别、物体检测、人脸识别、手势识别等。:在机器人导航、环境感知和交互中,OpenCV 用于处理传感器数据和视觉信息。:在医学影像分析中,OpenCV 用于图像增强、分割和特征提取。
2024-10-31 17:36:49 506
原创 10.29Python_包和模块
一个.py 文件就是一个模块模块是含有一系列数据函数类等的程序作用把相关功能的函数等放在一起有利于管理,有利于多人合作开发模块的分类内置模块(在python3 程序内部,可以直接使用)标准库模块(在python3 安装完后就可以使用的 )第三方模块(需要下载安装后才能使用)自定义模块(用户自己编写)模块名如果要给别的程序导入,则模块名必须是 标识符实例小张写了一个模块,内部有两个函数,两个字符串... 此处省略 200字此函数用来求和。
2024-10-29 16:37:31 932
原创 10.29Python_数据结构_队列和树
双端队列(Deque,Double-Ended Queue)是一种具有队列和栈性质的数据结构,它允许我们在两端进行元素的添加(push)和移除(pop)操作。当结合使用appendleft和popleft时,你实际上是在实现一个栈(Stack)的数据结构,因为栈是后进先出(LIFO)的,而这两个操作正好模拟了栈的“压栈”和“弹栈”行为。Python标准库中的queue模块提供了多种队列实现,包括普通队列、双端队列、优先队列等。deque是一个双端队列的实现,它提供了在两端快速添加和移除元素的能力。
2024-10-29 16:05:46 689
原创 10.28Python_数据结构_栈和链表
数据结构是计算机科学中的一个核心概念,它是指数据的组织、管理和存储方式,以及数据元素之间的关系。数据结构通常用于允许高效的数据插入、删除和搜索操作。:数组、链表、栈、队列等。:树、二叉树、堆、图等。:哈希表。:B树、B+树等。
2024-10-28 17:02:32 1103
原创 10.28Python_pandas_csv
CSV(Comma-Separated Values,逗号分隔值,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本);CSV 是一种通用的、相对简单的文件格式,被用户、商业和科学广泛应用。
2024-10-28 16:44:35 558
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人