机器学习
Gshiner
这个作者很懒,什么都没留下…
展开
-
【机器学习 第八周】聚类算法K-means
梳理大纲: 聚类算法K-means 【1】k-means:模型原理、收敛过程、超参数的选择 【2】代码实现 参考资料: 机器学习 西瓜书 以下微信文章 From【木东居士】 公众号 From 机器学习 小组:由【木东居士】公众号 定期发起 对数据感兴趣的伙伴们 可一同在此交流学习 待整理 ...原创 2019-12-29 21:47:21 · 214 阅读 · 0 评论 -
【机器学习 第七周】决策树
梳理大纲: 决策树 【1】决策树:决策树、信息熵与最优划分、基尼系数、CART 【2】实现:决策树实现 参考资料: 机器学习 西瓜书 以下微信文章 From【木东居士】 公众号 From 机器学习 小组:由【木东居士】公众号 定期发起 对数据感兴趣的伙伴们 可一同在此交流学习 【1】决策树 决策树是一种常见的机器学习算法,它的思想十分朴素,类似于我们平时利用选择做决策的过程。 类似...原创 2019-12-22 22:51:49 · 579 阅读 · 0 评论 -
【机器学习 第六周】逻辑回归
1111111111原创 2019-12-15 23:58:54 · 252 阅读 · 0 评论 -
【机器学习 第五周】最优化方法:梯度下降
梳理大纲: 最优化方法:梯度下降 【1】梯度下降 【2】随机梯度下降 参考资料: 机器学习 西瓜书 以下微信文章 From【木东居士】 公众号 From 机器学习 小组:由【木东居士】公众号 定期发起 对数据感兴趣的伙伴们 可一同在此交流学习 【1】梯度下降 梯度的理解: 多元函数的导数(derivative)就是梯度(gradient),分别对每个变量进行微分,然后用逗号分割开,...原创 2019-12-08 21:47:39 · 393 阅读 · 0 评论 -
【机器学习 第四周】简单线性回归和多元线性回归
梳理大纲: 简单线性回归和多元线性回归 【1】简单线性回归:简单线性回归及最小二乘法的数据推导 【2】多元线性回归:多选线性回归和正规方程解及实现 参考资料: 机器学习 西瓜书 以下微信文章 From【木东居士】 公众号 From 机器学习 小组:由【木东居士】公众号 定期发起 对数据感兴趣的伙伴们 可一同在此交流学习 简单线性回归: 简单线性回归是属于回归(regression)...原创 2019-11-29 17:16:50 · 1524 阅读 · 0 评论 -
【机器学习 第三周】简单的数据预处理和特征工程
梳理大纲: 简单的数据预处理和特征工程 【1】数据归一化:无量纲化:最值归一化、均值方差归一化及sklearn中的Scaler 【2】特征工程:缺失值与特征处理 缺失值处理 + 分类型特征处理(编码与哑变量)+ 连续型特征处理(二值化与分段) 参考资料: 机器学习 西瓜书 以下微信文章 From【木东居士】 公众号 From 机器学习 小组:由【木东居士】公众号 定期发起 对数据感兴趣...原创 2019-11-29 16:36:21 · 655 阅读 · 0 评论 -
【机器学习 第二周】数据拆分&评价结果&超参数调整
梳理大纲: 数据拆分&评价结果 【1】数据拆分:训练数据集&测试数据集 【2】评价分类结果:精准度、混淆矩阵、精准率、召回率、F1 Score、ROC曲线等 【3】评价回归结果:MSE、RMSE、MAE、R Squared 参考资料: 机器学习 西瓜书 微信文章 From【木东居士】 公众号 From 机器学习 小组:由【木东居士】公众号 定期发起 对数据感兴趣的伙伴们...原创 2019-11-17 23:42:28 · 494 阅读 · 0 评论 -
【机器学习 第一周】KNN-K邻近算法
梳理大纲: KNN算法 【1】了解kNN算法的思想及其原理 【2】使用Python手动实现kNN算法,并在sklearn中调用kNN算法 【3】了解监督学习和非监督学习的概念 参考资料: 机器学习 西瓜书 微信文章 From【木东居士】 公众号 From 机器学习 小组:由【木东居士】公众号 定期发起 对数据感兴趣的伙伴们 可一同在此交流学习 KNN算法的思想及原理 KNN算法,又...原创 2019-11-10 23:38:43 · 357 阅读 · 0 评论