文章目录
一、为什么要学图片爬虫?
在这个视觉主导的时代(数据统计显示网页图片占比超60%)!!!学会批量获取图片数据简直是职场外挂!不管是做竞品分析、素材收集还是数据可视化,掌握这个技能都能让你效率翻倍~
二、必备工具清单
2.1 Requests库
# 安装命令(必须收藏)
pip install requests
这个库就像网络世界的「万能钥匙」🔑,能轻松获取网页源代码。偷偷告诉你:用session()
保持会话,能突破某些网站的登录限制!
2.2 BeautifulSoup4
# 解析神器安装
pip install beautifulsoup4
网页就像俄罗斯套娃,BS4就是帮你拆解套娃的「X光机」!重点掌握find_all()
和CSS选择器用法,后面有大用!
三、实战:批量下载壁纸网站美图
3.1 锁定目标网站
以某壁纸站为例(注意:实际使用请遵守网站robots.txt规则)
3.2 代码分解教学
步骤1:伪装浏览器访问
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36',
'Referer': 'https://example.com' # 这个反爬必须设置!
}
response = requests.get(url, headers=headers)
步骤2:解析图片地址
soup = BeautifulSoup(response.text, 'lxml')
img_tags = soup.select('div.gallery img[data-src]') # CSS选择器精准定位
# 提取高清图链接(重点!)
img_urls = [img['data-src'].replace('_thumbnail', '') for img in img_tags]
步骤3:自动化下载保存
for index, url in enumerate(img_urls):
img_data = requests.get(url, stream=True).content
with open(f'wallpaper_{index}.jpg', 'wb') as f:
f.write(img_data)
print(f'✅ 第{index+1}张下载完成!') # 进度提示超重要
3.3 处理分页技巧
发现地址规律是关键!很多网站分页是这样的:
https://example.com/page/1
https://example.com/page/2
用for循环轻松搞定:
for page in range(1, 11): # 爬前10页
url = f'https://example.com/page/{page}'
# 接之前的代码...
四、突破反爬的5个绝招
- 随机延迟:
time.sleep(random.uniform(0.5, 2.5))
- 代理IP池:推荐使用快代理/站大爷的API服务
- 请求头伪装:fake_useragent库自动生成UA
- 验证码识别:简单验证码用tesseract,复杂的上打码平台
- 动态渲染处理:遇到JS加载用Selenium(核武器!)
五、项目升级指南
5.1 图片去重方案
import hashlib
def get_file_md5(file_path):
with open(file_path, 'rb') as f:
return hashlib.md5(f.read()).hexdigest()
5.2 多线程加速
from concurrent.futures import ThreadPoolExecutor
with ThreadPoolExecutor(max_workers=8) as executor:
executor.map(download_image, img_urls)
5.3 异常处理模板
try:
# 你的爬虫代码
except requests.exceptions.ConnectionError:
print('⚠️ 网络连接异常!')
except Exception as e:
print(f'❌ 未知错误:{str(e)}')
六、法律红线提醒(必看!!!)
- 绝对不要爬取用户隐私数据
- 遵守网站的
robots.txt
协议 - 控制请求频率(建议≥3秒/次)
- 商用目的必须获得授权
七、常见问题QA
Q:返回403错误怎么办?
A:立即检查headers设置,特别是Cookie和Referer
Q:图片下载到一半失败?
A:使用stream=True
参数+分块下载:
r = requests.get(url, stream=True)
with open(file_name, 'wb') as f:
for chunk in r.iter_content(1024):
f.write(chunk)
Q:如何爬取动态加载的图片?
A:先用Selenium渲染页面,再提取源码解析
八、项目扩展方向
- 搭建图片管理网站(Flask+Django)
- 开发Chrome插件自动抓取
- 结合OpenCV做图像分析
- 制作桌面端下载工具(PyQt)
小贴士:GitHub上有大量开源图片爬虫项目,学习时多参考但别直接copy!(容易被识别)