- 微分方程的解法
- 如何用python解微分方程
- 偏微分方程及其求解方法
- 微分方程的基本案例
- 差分方程的求解
- 数值计算方法
- 元胞自动机
1.1微分与导数的关系: 导数通俗地讲就是曲线在某一点处的切线斜率,而微分则是自变量x施加一个很小的增量,相应的函数值得变化。
2.1一阶线性微分方程的解:通常会使用分离变量积分法和常数变易法这两种方法,找到方程的通解。其中方程等号右边多于0被称作奇次方程,不等于0称作非其次方程。
2.2二阶常系数线性微分方程的解:出现二阶导数的方程为二阶微分方程,根据特征方程的不同实根、相同实根、或共轭复根,齐次微分方程的解会有不同的形式。通解是奇次方程的通解加上非齐次方程的特解。
2.3利用Python求函数的微分与积分:使用Numpy和SciPy这两个库来进行函数的微分和积分计算。
import numpy as np
from scipy.integrate import quad
定义求积分的函数f(x),以及定积分的区间,使用quad函数。代码如下:
ntegral, error = quad(f, 0, 0.7) print(f'定积分的结果是:{integral}')
对于函数的微分,我们可以使用Numpy库中的gradient
函数来近似求解,代码如下:
dydx = np.gradient(y, x),其中y表示函数,x表示取值和步长。
3.1使用Scipy和Sympy解微分方程: