微分方程与动力系统

  1. 微分方程的解法
  2. 如何用python解微分方程
  3. 偏微分方程及其求解方法
  4. 微分方程的基本案例
  5. 差分方程的求解
  6. 数值计算方法
  7. 元胞自动机

1.1微分与导数的关系: 导数通俗地讲就是曲线在某一点处的切线斜率,而微分则是自变量x施加一个很小的增量,相应的函数值得变化。

2.1一阶线性微分方程的解:通常会使用分离变量积分法和常数变易法这两种方法,找到方程的通解。其中方程等号右边多于0被称作奇次方程,不等于0称作非其次方程。

2.2二阶常系数线性微分方程的解:出现二阶导数的方程为二阶微分方程,根据特征方程的不同实根、相同实根、或共轭复根,齐次微分方程的解会有不同的形式。通解是奇次方程的通解加上非齐次方程的特解。

2.3利用Python求函数的微分与积分:使用Numpy和SciPy这两个库来进行函数的微分和积分计算。

import numpy as np

from scipy.integrate import quad

定义求积分的函数f(x),以及定积分的区间,使用quad函数。代码如下:

ntegral, error = quad(f, 0, 0.7) print(f'定积分的结果是:{integral}')

对于函数的微分,我们可以使用Numpy库中的gradient函数来近似求解,代码如下:

dydx = np.gradient(y, x),其中y表示函数,x表示取值和步长。

3.1使用Scipy和Sympy解微分方程:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值