泰勒公式

在数学中, 泰勒公式是一个用 函数在某点的信息描述其附近取值的公式。如果函数足够光滑的话,在已知函数在某一点的各阶 导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。
泰勒公式得名于英国数学家布鲁克·泰勒。他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例。

定义

泰勒公式可以用(无限 或者有限)若干项连加式(- 级数)来表示一个函数,这些相加的项由函数在某一点(或者加上在临近的一个点的
n+1
次导数)的 导数求得。
对于正整数n,若函数
f\left(x\right)
在闭区间
\left[a,b\right]
n
阶连续可导,且在
\left[a,b\right)
n+1
阶可导。任取
x\in\left[a,b\right]
是一定点,则对任意
x\in\left[a,b\right]
成立下式:
f\left(x\right)=f\left(a\right)+\frac{f'\left(a\right)}{1!}\left(x-a\right)+\frac{f^{\left(2\right)}\left(a\right)}{2!}\left(x-a\right)^2+\cdots+\frac{f^{\left(n\right)}\left(a\right)}{n!}\left(x-a\right)^n+R_n\left(x\right)
其中,
f^{\left(n\right)}\left(x\right)
表示
f\left(x\right)
的n阶导数,多项式称为函数
f\left(x\right)
在a处的泰勒展开式,剩余的
R_n\left(x\right)
是泰勒公式的余项,是
\left(x-a\right)^n
的高阶无穷小。 [1]
余项
泰勒公式的余项
R_n\left(x\right)
可以写成以下几种不同的形式:
1、佩亚诺(Peano)余项:
R_n\left(x\right)=o\left(\left(x-a\right)^n\right)
2、施勒米尔希-罗什(Schlomilch-Roche)余项:
R_n\left(x\right)=f^{(n+1)}\left(a+\theta\left(x-a\right)\right)\frac{\left(1-\theta\right)^{n+1-p}x^{n+1}}{n!p}
其中θ∈(0,1)。
3、拉格朗日(Lagrange)余项:
R_n\left(x\right)=f^{(n+1)}\left(a+\theta\left(x-a\right)\right)\frac{\left(x-a\right)^{n+1}}{\left(n+1\right)!}
其中θ∈(0,1)。
4、柯西(Cauchy)余项:
R_n\left(x\right)=f^{(n+1)}\left(a+\theta\left(x-a\right)\right)\frac{\left(1-\theta\right)^n\left(x-a\right)^{n+1}}{n!}
其中θ∈(0,1)。
5、积分余项:
R_n\left(x\right)=\frac{\left(-1\right)^n}{n!}\int_a^x\left(t-x\right)^nf^{n+1}\left(t\right)dt
[2]
以上诸多余项事实上很多是等价的。
麦克劳林展开
函数的麦克劳林展开指上面泰勒公式中a取0的情况,即是泰勒公式的特殊形式,若
f\left(x\right)
在x=0处n阶连续可导,则下式成立:
f\left(x\right)=f\left(0\right)+\frac{f'\left(0\right)}{1!}x+\frac{f^{\left(2\right)}\left(0\right)}{2!}x^2+\frac{f^{\left(3\right)}\left(0\right)}{3!}x^3+\cdots+\frac{f^{\left(n\right)}\left(0\right)}{\left(n\right)!}x^n+R_n\left(x\right)
其中
f^{\left(n\right)}\left(x\right)
表示
f\left(x\right)
的n阶导数。 [1]

编辑本段泰勒中值定理

f\left(x\right)
在包含
x_0
的某开区间(a,b)内具有直到n+1阶的导数,则当x∈(a,b)时,有
f\left(x\right)=f\left(x_0\right)+\frac{f'\left(x_0\right)}{1!}\left(x-x_0\right)+\frac{f^{\left(2\right)}\left(x_0\right)}{2!}\left(x-x_0\right)^2+\cdots+\frac{f^{\left(n\right)}\left(x_0\right)}{n!}\left(x-x_0\right)^n+R_n\left(x\right)
其中
R_n\left(x\right)
是n阶泰勒公式的拉格朗日余项:
R_n\left(x\right)=f^{n+1}\left(\delta)\right)\frac{\left(x-x_0\right)^{n+1}}{\left(n+1\right)!}
\delta\in\left(x_0,x\right)
[3]

编辑本段推导

展开式

我们知道,根据 拉格朗日中值定理导出的有限增量定理有:
\lim_{\Delta x\rightarrow0}\left(f\left(x_0+\Delta x\right)-f\left(x_0\right)\right)=f'\left(x_0\right)\Delta x
于是:
f\left(x\right)=f\left(x_0\right)+f'\left(x_0\right)\left(x-x_0\right)+\alpha
其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:
P\left(x\right)=A_0+A_1\left(x-x_0\right)+A_2\left(x-x_0\right)^2+\cdots+A_n\left(x-x_0\right)^n
来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足 :
P\left(x_0\right)=f\left(x_0\right)
P'\left(x_0\right)=f'\left(x_0\right)
P^{\left(2\right)}\left(x_0\right)=f^{\left(2\right)}\left(x_0\right)
\cdots
P^{\left(n\right)}\left(x_0\right)=f^{\left(n\right)}\left(x_0\right)
于是可以依次求出A0、A1、A2、……、An,显然有:
P\left(x_0\right)=A_0
,所以
A_0=f\left(x_0\right)
P'\left(x_0\right)=A_1
,所以
A_1=f'\left(x_0\right)
P^{\left(2\right)}=2!A_2
,所以
A_2=\frac{f^{\left(2\right)}\left(x_0\right)}{2!}
\cdots
P^{\left(n\right)}\left(x_0\right)=n!A_n
,所以
A_n=\frac{f^{\left(n\right)}\left(x_0\right)}{n!}
至此,多项的各项系数都已求出,得:
P\left(x\right)=f\left(x_0\right)+f'\left(x_0\right)\left(x-x_0\right)+\frac{f^{\left(2\right)}\left(x_0\right)}{2!}\left(x-x_0\right)^2+\cdots+\frac{f^{\left(n\right)}\left(x_0\right)}{n!}\left(x-x_0\right)^n
以上就是函数
f\left(x\right)
的泰勒展开式。 [1]

余项

接下来就要求误差的具体表达式了。设
R_n\left(x\right)=f\left(x\right)-P\left(x\right)
,令
x=x_0
得到:
R_n\left(x_0\right)=f\left(x_0\right)-P\left(x_0\right)=0
进而:
R_n\left(x_0\right)=R'_n\left(x_0\right)=R^{\left(2\right)}_n\left(x_0\right)=\cdots=R^{\left(n\right)}_n\left(x_0\right)=0
根据 柯西中值定理
\frac{R_n\left(x\right)}{\left(x-x_0\right)^{n+1}}=\frac{R_n\left(x\right)-R_n\left(x_0\right)}{\left(x-x_0\right)^{n+1}-0}=\frac{R'_n\left(\theta_1\right)}{\left(n+1\right)}\left(\theta_1-x_0\right)^n
其中
\theta_1\in\left(x,x_0\right)
继续使用柯西中值定理得到:
\frac{R'_n\left(\theta_1\right)-R'_n\left(x_0\right)}{\left(n+1\right)\left(\theta_1-x_0\right)^n-0}=\frac{R^{\left(2\right)}_n\left(\theta_2\right)}{n\left(n+1\right)}\left(\theta_2-x_0\right)^{n-1}
其中
\theta_2\in\left(x,\theta_1\right)
连续使用n+1次后得到:
\frac{R_n\left(x\right)}{\left(x-x_0\right)^{n+1}}=\frac{R^{\left(n+1\right)}_n\left(\theta\right)}{\left(n+1\right)!}
\theta\in\left(x,x_0\right)
其中;
同时:
R^{\left(n+1\right)}_n\left(x\right)=f^{\left(n+1\right)}\left(x\right)-P^{\left(n+1\right)}\left(x\right)
而:
P^n\left(x\right)=n!A_n
,是一个常数,因此:
P^{\left(n+1\right)}\left(x\right)=0
进而:
R^{\left(n+1\right)}_n\left(x\right)=f^{\left(n+1\right)}\left(x\right)
综上可得:
R_n\left(x\right)=\frac{f^{\left(n+1\right)}\left(\theta\right)}{\left(n+1\right)!}\left(x-x_0\right)^{n+1}
一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。 [1]

编辑本段历史

希腊哲学家芝诺在考虑利用无穷级数求和来得到有限结果的问题时,得出不可能的结论- 芝诺悖论,这些悖论中最著名的两个是“ 阿喀琉斯追乌龟”和“ 飞矢不动”。
后来, 亚里士多德对芝诺悖论在哲学上进行了反驳,直到 德谟克利特以及后来的 阿基米德进行研究,此部分数学内容才得到解决。阿基米德应用 穷举法使得一个无穷级数能够被逐步的细分,得到了有限的结果。 [4]
14世纪,玛达瓦发现了一些特殊函数,包括正弦、余弦、正切、反正切等三角函数的泰勒级数。
17世纪,詹姆斯·格雷果里同样继续着这方面的研究,并且发表了若干麦克劳林级数。直到1712年,英国牛顿学派最优秀代表人物之一的数学家泰勒提出了一个通用的方法,这就是为人们所熟知的泰勒级数;爱丁堡大学的科林·麦克劳林教授发现了泰勒级数的特例,称为麦克劳林级数。

编辑本段应用

实际应用中,泰勒公式需要截断,只取有限项,一个函数的有限项的泰勒级数叫做泰勒展开式。泰勒公式的余项可以用于估算这种近似的误差。
泰勒展开式的重要性体现在以下三个方面:
  1. 幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。
  2. 一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。
  3. 泰勒级数可以用来近似计算函数的值。
实例
1、展开三角函数
y=sin\left(x\right)
y=cos\left(x\right)
解:根据导数表得:
f\left(x\right)=sin\left(x\right)
f
f^2\left(0\right)=0
f^3\left(0\right)=-1
f^4\left(0\right)=0
最后可得:
sin\left(x\right)=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\frac{x^9}{9!}+R_n\left(x\right)
其中
Rn\left(x\right)
为Peano余项:
R_n\left(x\right)=o\left(x^{10}\right)
或:
R_n\left(x\right)=\frac{sin\left(\theta+\frac{11\pi}{2}\right)}{11}x^{11}
其中
\theta\in\left(0,x\right)
[5] 类似地,可以展开y=cos(x)。
2、计算近似值
e=\lim_{x\rightarrow\infty}\left(1+\frac{1}{x}\right)^x
解:对指数函
y=e^x
运用 麦克劳林展开式并舍弃余项:
e^x\approx1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\cdots+\frac{x^n}{n!}
当x=1时:
e\approx1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots+\frac{1}{n!}
取n=10,即可算出近似值e≈2.7182818。 [5]
3、欧拉公式:
e^{ix}=cos\left(x\right)+isin\left(x\right)
(其中
i=\sqrt{-1}
,即一个虚数单位)
证明:这个公式把 复数写为了幂指数形式,其实它也是由 麦克劳林展开式确切地说是麦克劳林级数证明的。过程具体不写了,就把思路讲一下:先展开指数函数e^z,然后把各项中的z写成ix。由于i的幂 周期性,可已把系数中含有土i的项用乘法分配律写在一起,剩余的项写在一起,刚好是cosx,sinx的展开式。然后让sinx乘上提出的i,即可导出 欧拉公式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值