- 博客(19)
- 收藏
- 关注
原创 关键点检测(11)-HRNet网络
在之前的一系列中,我主要对yolo-pose做了笔记。这里我打算将一种高精度的关键点检测技术学习一下。那就是HRNet网络。是我们中国科学院大学和微软亚洲研究院一起发布的。实际上HRNet 和 YOLO 系列的关键点检测(如 YOLO-Pose、YOLOv8-Pose)是两种不同的技术路线,一种是基于回归的方式,一种是基于热力图的方式。它们在设计目标、网络结构和应用场景上有显著区别。HRNet 的提出时间早于 YOLO 的关键点检测方法,且两者的侧重点完全不同。所以有必要学习一下。
2025-08-16 20:21:41
940
原创 关键点检测(10)——yolov8-pose 复现coco-pose
COCO-Pose 数据集是 COCO(Common Objects in Context)数据集的专门版本,专为姿势估计任务而设计。它利用 COCO Keypoints 2017 图像和标签来训练 YOLO 等模型以完成姿势估计任务,该数据集包含20万张标有姿势估计任务关键点的图像。并且支持17个人体关键点,便于进行详细的姿势估计。与COCO一样,COCO-Pose提供了标准化的评估指标,包括姿态估计任务的对象关键点相似度(OKS),使其适合比较模型的性能。1. 鼻子 (Nose)
2025-08-09 20:48:22
668
原创 基于transformer的目标检测——匈牙利匹配算法
目前目标检测系列分为基于卷积神经网络(CNN)系列和基于transformer方法系列。对于卷积系列我个人也学习了很多,而对于基于transformer系列的也开始在了解。所以我打算起一个专栏,专门对自己知识的盲区进行扫盲。所以这个系列的文章,也是想到什么总结什么。最近在使用C++复现DEIM的代码。同时也是了解到Hungarian Matching算法。这一篇就从匈牙利匹配开始吧。注意我这里只介绍与DEIM中用到的代码相关的逻辑。至于更深层次的或者其他的我暂时不做了解。
2025-08-03 17:14:27
1101
原创 关键点检测(9)——yolov8-loss的代码解析2
上文我们提到然而这个策略内容并没有细讲。这里展开学习一下。TaskAlignedAssigner 又称为对齐分类器,在YOLOv8中是一种动态的正样本分配策略。主要用于解决目标检测中正样本分配的优化问题。其匹配策略简单来说就是:根据所有像素点预测的分类与回归的分数通过加权的方式得到的分数选择正样本。
2025-08-02 15:19:59
726
原创 关键点检测(8)——yolov8-loss的代码解析
我们知道yolov8在流行的yolov5的架构上进行了扩展。在多个方面提供了改进。看出,YOLOv8 主要参考了最近提出的诸如 YOLOX、YOLOv6、YOLOv7 和 PPYOLOE 等算法的相关设计,本身的创新点不多,偏向工程实践,主推的还是 ultralytics 这个框架本身。but anyway,我们还是学习一下这个集大成者。
2024-10-19 17:38:13
2850
11
原创 关键点检测(7)——yolov8-head的搭建
这是关键点检测的第七课,主要学习ultralytics的关键点检测的head部分,学习源码,并自己实现。
2024-09-07 22:01:49
3978
2
原创 关键点检测(6)——yolov8-neck的搭建
这是关键点检测的第六课,主要学习ultralytics的关键点检测的neck部分,学习源码,并自己实现
2024-09-01 17:04:34
2995
原创 关键点检测(5)——yolov8的backbone搭建
这是关键点检测的第五课,主要学习ultralytics的关键点检测的backbone,学习源码,并自己实现
2024-08-27 00:01:51
2529
原创 关键点检测(4)——新版yolov8的安装及其pyproject.toml学习
本文是关键点检测的第四课,先从单阶段的yolo开始,要使用就要先安装,但是安装出现了新的知识点,就补充一下。
2024-08-25 12:24:31
1970
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人