自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(33)
  • 收藏
  • 关注

原创 塔图姆35+7+6凯尔特人胜 绿军新核已就位

作为球队的新核心,他不仅在进攻端表现出色,还在防守和组织方面展现了领导力。随着塔图姆的持续成长和球队阵容的进一步磨合,凯尔特人队有望在接下来的比赛中继续保持强势。球队的目标显然是争夺更高的荣誉,而塔图姆作为核心的表现将是实现这一目标的重要保障。除了塔图姆的出色发挥,凯尔特人队的其他球员也在比赛中做出了贡献。塔图姆的35分是全场最高,7个篮板和6次助攻也展现了他在比赛中的全面性。塔图姆在本场比赛中表现出色,贡献35分、7个篮板和6次助攻的全面数据,成为球队取胜的关键人物。

2025-09-26 02:50:48 255

原创 亚历山大关键封盖 雷霆险胜独行侠 新星闪耀

亚历山大在终场前1.8秒封盖独行侠球员的绝平上篮,帮助雷霆以105-103险胜。这一防守成为全场转折点,独行侠最后时刻连续两次关键进攻被雷霆破坏。雷霆末节采用“无限换防”策略,限制东契奇与欧文的挡拆配合。独行侠最后回合选择突破而非三分战术引发争议,亚历山大凭借2.13米的臂展完成致命封盖。雷霆2023年12号秀杰伦·威廉姆斯近5战场均21.4分,三分命中率41%,其侧翼持球能力完美适配亚历山大,被美媒评为“最被低估的新秀组合”。雷霆凭借本场胜利升至西部第三,独行侠跌至附加赛区。

2025-09-26 02:41:16 309

原创 做爬虫 / 数据分析 / 后端:GIL 下 Python 多线程与多进程怎么选?

Python 的全局解释器锁(GIL)确保同一时间仅有一个线程执行 Python 字节码,导致多线程在 CPU 密集型任务中无法有效利用多核性能。但在 I/O 密集型任务(如网络请求、文件读写)中,线程在等待 I/O 时会释放 GIL,此时多线程仍能提升效率。

2025-09-25 06:14:17 531

原创 面对大任务并发:GIL 详解帮你定 Python 多线程与多进程

GIL 的存在简化了 CPython 的内存管理,但也限制了多线程程序的性能,尤其是在 CPU 密集型任务中。GIL 对多线程的影响主要体现在 CPU 密集型任务上,因为线程在等待 GIL 时无法并行执行。对于 I/O 密集型任务,由于线程在等待 I/O 时释放 GIL,多线程仍能有效提升性能。在这些场景中,线程在等待 I/O 操作时会释放 GIL,其他线程可以继续执行,从而提升程序的整体效率。每个进程有独立的 Python 解释器和内存空间,不受 GIL 限制,可以充分利用多核 CPU。

2025-09-25 06:06:51 676

原创 从执行效率看选择:GIL 详解与 Python 多线程、多进程的实战对比

而多进程为每个进程分配独立 GIL,可调度多核并行计算,相同任务耗时直接减少 65%,效率优势显著,比如并发读取 500 个文件,多线程能在 IO 等待间隙切换线程,避免资源闲置,耗时仅为单线程的 1/4;若用多进程,虽也能实现并发,但进程创建与通信的额外开销,会让效率比多线程低 20%,此时。Python 的全局解释器锁(GIL),是左右多线程与多进程执行效率的关键 —— 它规定同一时刻仅一个线程能执行 Python 字节码,即便在多核 CPU 上也无法实现线程级并行。

2025-09-25 05:57:21 387

原创 处理高并发任务:GIL 下 Python 多线程与多进程该怎么选?

而多进程为每个进程分配独立 GIL,能充分利用多核 CPU,相同任务耗时可降低 60%,此时。(如多用户请求处理、多文件读写),GIL 影响可忽略。例如高并发接口处理,多线程响应效率比单线程高 3-4 倍,且内存消耗仅为多进程的 1/4,Python 的全局解释器锁(GIL),是决定多线程、多进程选择的核心变量 —— 它强制同一时刻仅一个线程执行 Python 字节码,直接影响高并发任务的效率。简言之,GIL 下选对工具的关键:CPU 密集用多进程突破硬件限制,IO 密集用多线程降低资源成本。

2025-09-25 05:52:21 321

原创 爬虫 / 计算 / IO 任务:结合 GIL 选对 Python 多线程与多进程

(如数据建模、矩阵运算)依赖 CPU 持续工作,GIL 会让多线程陷入 “假并发”,线程切换反而增加开销。而多进程通过为每个进程分配独立 GIL,可充分利用多核 CPU,耗时直接减少 55%,(等待网页响应),核心瓶颈是 IO 等待而非 CPU。Python 的全局解释器锁(GIL),决定了同一时刻仅一个线程执行 Python 字节码,这让多线程、多进程的选择需紧扣任务类型。总之,绕开 GIL 限制的关键是:计算密集用多进程,IO、爬虫任务选多线程,精准匹配才能最大化 Python 并发效率。

2025-09-25 05:51:45 531

原创 实战案例拆解:GIL 详解与 Python 多线程、多进程的选择逻辑

实战中,若处理 CPU 密集型任务(如数据计算),多线程会因 GIL 竞争导致性能瓶颈。而改用多进程,每个进程有独立 GIL,可充分利用多核,耗时直接减少 60%。比如爬虫爬取 1000 个网页,多线程通过线程切换规避 IO 等待,效率比单线程提升 3 - 5 倍,且资源消耗远低于多进程。Python 的全局解释器锁(GIL)是影响并发性能的核心因素,它确保同一时刻只有一个线程执行 Python 字节码,即便在多核 CPU 上也如此。库),以此突破 GIL 限制,最大化 Python 并发效率。

2025-09-25 05:50:44 284

原创 模板代码可读性提升

重新排列范围,使得指定位置的元素等于排序后的元素,并且左边的元素都不大于它,右边的元素都不小于它。算法的原理是 “覆盖” 要删除的元素,将保留的元素移到前面,返回新的逻辑尾迭代器,但。对范围内的每个元素应用一个函数,并将结果存储在另一个范围内。移除范围内连续的重复元素,返回新的逻辑结尾迭代器。旋转范围内的元素,使中间元素成为新的第一个元素。这些算法不会改变它们所操作的容器中的元素。这些算法会修改它们所操作的容器中的元素。同时返回范围内的最小和最大元素的迭代器。返回范围内的最小/最大元素的迭代器。

2025-09-25 00:30:25 422

原创 Python性能优化技巧:让你的代码飞起来

python# 创建基类# 定义一对多关系# 定义多对一关系# 定义多对多关系(通过关联表)# 关联表(用于多对多关系)SQLAlchemy ORM提供了强大而灵活的数据库操作方式,通过本文的介绍,您应该能够:安装和配置SQLAlchemy定义数据模型和关系执行基本的CRUD操作构建复杂查询管理数据库事务遵循最佳实践SQLAlchemy还有更多高级特性,如混合属性、事件监听、自定义查询等,值得进一步探索学习。

2025-09-25 00:29:54 185

原创 高性能图像处理库

重新排列范围,使得指定位置的元素等于排序后的元素,并且左边的元素都不大于它,右边的元素都不小于它。算法的原理是 “覆盖” 要删除的元素,将保留的元素移到前面,返回新的逻辑尾迭代器,但。对范围内的每个元素应用一个函数,并将结果存储在另一个范围内。移除范围内连续的重复元素,返回新的逻辑结尾迭代器。旋转范围内的元素,使中间元素成为新的第一个元素。这些算法不会改变它们所操作的容器中的元素。这些算法会修改它们所操作的容器中的元素。同时返回范围内的最小和最大元素的迭代器。返回范围内的最小/最大元素的迭代器。

2025-09-25 00:29:23 219

原创 C++20概念(Concepts)入门指南

重新排列范围,使得指定位置的元素等于排序后的元素,并且左边的元素都不大于它,右边的元素都不小于它。算法的原理是 “覆盖” 要删除的元素,将保留的元素移到前面,返回新的逻辑尾迭代器,但。对范围内的每个元素应用一个函数,并将结果存储在另一个范围内。移除范围内连续的重复元素,返回新的逻辑结尾迭代器。旋转范围内的元素,使中间元素成为新的第一个元素。这些算法不会改变它们所操作的容器中的元素。这些算法会修改它们所操作的容器中的元素。同时返回范围内的最小和最大元素的迭代器。返回范围内的最小/最大元素的迭代器。

2025-09-25 00:28:52 183

原创 工具、测试与部署

python# 创建基类# 定义一对多关系# 定义多对一关系# 定义多对多关系(通过关联表)# 关联表(用于多对多关系)SQLAlchemy ORM提供了强大而灵活的数据库操作方式,通过本文的介绍,您应该能够:安装和配置SQLAlchemy定义数据模型和关系执行基本的CRUD操作构建复杂查询管理数据库事务遵循最佳实践SQLAlchemy还有更多高级特性,如混合属性、事件监听、自定义查询等,值得进一步探索学习。

2025-09-25 00:28:21 345

原创 Python迭代器(Iterator)揭秘:for循环背后的故事

python# 创建基类# 定义一对多关系# 定义多对一关系# 定义多对多关系(通过关联表)# 关联表(用于多对多关系)SQLAlchemy ORM提供了强大而灵活的数据库操作方式,通过本文的介绍,您应该能够:安装和配置SQLAlchemy定义数据模型和关系执行基本的CRUD操作构建复杂查询管理数据库事务遵循最佳实践SQLAlchemy还有更多高级特性,如混合属性、事件监听、自定义查询等,值得进一步探索学习。

2025-09-24 00:08:10 609

原创 模板元编程应用场景

重新排列范围,使得指定位置的元素等于排序后的元素,并且左边的元素都不大于它,右边的元素都不小于它。算法的原理是 “覆盖” 要删除的元素,将保留的元素移到前面,返回新的逻辑尾迭代器,但。对范围内的每个元素应用一个函数,并将结果存储在另一个范围内。移除范围内连续的重复元素,返回新的逻辑结尾迭代器。旋转范围内的元素,使中间元素成为新的第一个元素。这些算法不会改变它们所操作的容器中的元素。这些算法会修改它们所操作的容器中的元素。同时返回范围内的最小和最大元素的迭代器。返回范围内的最小/最大元素的迭代器。

2025-09-24 00:07:40 828

原创 为你的Python脚本添加图形界面(GUI)

python# 创建基类# 定义一对多关系# 定义多对一关系# 定义多对多关系(通过关联表)# 关联表(用于多对多关系)SQLAlchemy ORM提供了强大而灵活的数据库操作方式,通过本文的介绍,您应该能够:安装和配置SQLAlchemy定义数据模型和关系执行基本的CRUD操作构建复杂查询管理数据库事务遵循最佳实践SQLAlchemy还有更多高级特性,如混合属性、事件监听、自定义查询等,值得进一步探索学习。

2025-09-24 00:07:09 845

原创 Python Lambda(匿名函数):简洁之道

python# 创建基类# 定义一对多关系# 定义多对一关系# 定义多对多关系(通过关联表)# 关联表(用于多对多关系)SQLAlchemy ORM提供了强大而灵活的数据库操作方式,通过本文的介绍,您应该能够:安装和配置SQLAlchemy定义数据模型和关系执行基本的CRUD操作构建复杂查询管理数据库事务遵循最佳实践SQLAlchemy还有更多高级特性,如混合属性、事件监听、自定义查询等,值得进一步探索学习。

2025-09-24 00:06:38 858

原创 实战:用OpenCV和Python进行人脸识别

python# 创建基类# 定义一对多关系# 定义多对一关系# 定义多对多关系(通过关联表)# 关联表(用于多对多关系)SQLAlchemy ORM提供了强大而灵活的数据库操作方式,通过本文的介绍,您应该能够:安装和配置SQLAlchemy定义数据模型和关系执行基本的CRUD操作构建复杂查询管理数据库事务遵循最佳实践SQLAlchemy还有更多高级特性,如混合属性、事件监听、自定义查询等,值得进一步探索学习。

2025-09-24 00:05:20 772

原创 C++中的适配器模式实战

重新排列范围,使得指定位置的元素等于排序后的元素,并且左边的元素都不大于它,右边的元素都不小于它。算法的原理是 “覆盖” 要删除的元素,将保留的元素移到前面,返回新的逻辑尾迭代器,但。对范围内的每个元素应用一个函数,并将结果存储在另一个范围内。移除范围内连续的重复元素,返回新的逻辑结尾迭代器。旋转范围内的元素,使中间元素成为新的第一个元素。这些算法不会改变它们所操作的容器中的元素。这些算法会修改它们所操作的容器中的元素。同时返回范围内的最小和最大元素的迭代器。返回范围内的最小/最大元素的迭代器。

2025-09-23 12:05:20 460

原创 自动化你的日常工作:一个Python脚本的诞生

python# 创建基类# 定义一对多关系# 定义多对一关系# 定义多对多关系(通过关联表)# 关联表(用于多对多关系)SQLAlchemy ORM提供了强大而灵活的数据库操作方式,通过本文的介绍,您应该能够:安装和配置SQLAlchemy定义数据模型和关系执行基本的CRUD操作构建复杂查询管理数据库事务遵循最佳实践SQLAlchemy还有更多高级特性,如混合属性、事件监听、自定义查询等,值得进一步探索学习。

2025-09-23 12:04:19 682 98

原创 数据分析师的Python工具箱

python# 创建基类# 定义一对多关系# 定义多对一关系# 定义多对多关系(通过关联表)# 关联表(用于多对多关系)SQLAlchemy ORM提供了强大而灵活的数据库操作方式,通过本文的介绍,您应该能够:安装和配置SQLAlchemy定义数据模型和关系执行基本的CRUD操作构建复杂查询管理数据库事务遵循最佳实践SQLAlchemy还有更多高级特性,如混合属性、事件监听、自定义查询等,值得进一步探索学习。

2025-09-23 12:03:18 796

原创 C++中的组合模式高级应用

重新排列范围,使得指定位置的元素等于排序后的元素,并且左边的元素都不大于它,右边的元素都不小于它。算法的原理是 “覆盖” 要删除的元素,将保留的元素移到前面,返回新的逻辑尾迭代器,但。对范围内的每个元素应用一个函数,并将结果存储在另一个范围内。移除范围内连续的重复元素,返回新的逻辑结尾迭代器。旋转范围内的元素,使中间元素成为新的第一个元素。这些算法不会改变它们所操作的容器中的元素。这些算法会修改它们所操作的容器中的元素。同时返回范围内的最小和最大元素的迭代器。返回范围内的最小/最大元素的迭代器。

2025-09-23 12:02:17 448 200

原创 用Python制作一个文字冒险游戏

python# 创建基类# 定义一对多关系# 定义多对一关系# 定义多对多关系(通过关联表)# 关联表(用于多对多关系)SQLAlchemy ORM提供了强大而灵活的数据库操作方式,通过本文的介绍,您应该能够:安装和配置SQLAlchemy定义数据模型和关系执行基本的CRUD操作构建复杂查询管理数据库事务遵循最佳实践SQLAlchemy还有更多高级特性,如混合属性、事件监听、自定义查询等,值得进一步探索学习。

2025-09-23 12:01:17 977

原创 编译器优化屏障使用

重新排列范围,使得指定位置的元素等于排序后的元素,并且左边的元素都不大于它,右边的元素都不小于它。算法的原理是 “覆盖” 要删除的元素,将保留的元素移到前面,返回新的逻辑尾迭代器,但。对范围内的每个元素应用一个函数,并将结果存储在另一个范围内。移除范围内连续的重复元素,返回新的逻辑结尾迭代器。旋转范围内的元素,使中间元素成为新的第一个元素。这些算法不会改变它们所操作的容器中的元素。这些算法会修改它们所操作的容器中的元素。同时返回范围内的最小和最大元素的迭代器。返回范围内的最小/最大元素的迭代器。

2025-09-22 12:21:03 559

原创 手把手教你用Python实现线性回归

python# 创建基类# 定义一对多关系# 定义多对一关系# 定义多对多关系(通过关联表)# 关联表(用于多对多关系)SQLAlchemy ORM提供了强大而灵活的数据库操作方式,通过本文的介绍,您应该能够:安装和配置SQLAlchemy定义数据模型和关系执行基本的CRUD操作构建复杂查询管理数据库事务遵循最佳实践SQLAlchemy还有更多高级特性,如混合属性、事件监听、自定义查询等,值得进一步探索学习。

2025-09-22 12:20:02 782

原创 C++与人工智能框架

重新排列范围,使得指定位置的元素等于排序后的元素,并且左边的元素都不大于它,右边的元素都不小于它。算法的原理是 “覆盖” 要删除的元素,将保留的元素移到前面,返回新的逻辑尾迭代器,但。对范围内的每个元素应用一个函数,并将结果存储在另一个范围内。移除范围内连续的重复元素,返回新的逻辑结尾迭代器。旋转范围内的元素,使中间元素成为新的第一个元素。这些算法不会改变它们所操作的容器中的元素。这些算法会修改它们所操作的容器中的元素。同时返回范围内的最小和最大元素的迭代器。返回范围内的最小/最大元素的迭代器。

2025-09-22 12:19:02 714

原创 数据分析与科学计算

python# 创建基类# 定义一对多关系# 定义多对一关系# 定义多对多关系(通过关联表)# 关联表(用于多对多关系)SQLAlchemy ORM提供了强大而灵活的数据库操作方式,通过本文的介绍,您应该能够:安装和配置SQLAlchemy定义数据模型和关系执行基本的CRUD操作构建复杂查询管理数据库事务遵循最佳实践SQLAlchemy还有更多高级特性,如混合属性、事件监听、自定义查询等,值得进一步探索学习。

2025-09-22 12:18:01 508

原创 Python十大常见错误及其解决方法(避坑指南)

python# 创建基类# 定义一对多关系# 定义多对一关系# 定义多对多关系(通过关联表)# 关联表(用于多对多关系)SQLAlchemy ORM提供了强大而灵活的数据库操作方式,通过本文的介绍,您应该能够:安装和配置SQLAlchemy定义数据模型和关系执行基本的CRUD操作构建复杂查询管理数据库事务遵循最佳实践SQLAlchemy还有更多高级特性,如混合属性、事件监听、自定义查询等,值得进一步探索学习。

2025-09-22 12:17:00 548

原创 实战:用OpenCV和Python进行人脸识别

python# 创建基类# 定义一对多关系# 定义多对一关系# 定义多对多关系(通过关联表)# 关联表(用于多对多关系)SQLAlchemy ORM提供了强大而灵活的数据库操作方式,通过本文的介绍,您应该能够:安装和配置SQLAlchemy定义数据模型和关系执行基本的CRUD操作构建复杂查询管理数据库事务遵循最佳实践SQLAlchemy还有更多高级特性,如混合属性、事件监听、自定义查询等,值得进一步探索学习。

2025-09-21 13:49:48 836

原创 Python在金融科技(FinTech)中的应用

python# 创建基类# 定义一对多关系# 定义多对一关系# 定义多对多关系(通过关联表)# 关联表(用于多对多关系)SQLAlchemy ORM提供了强大而灵活的数据库操作方式,通过本文的介绍,您应该能够:安装和配置SQLAlchemy定义数据模型和关系执行基本的CRUD操作构建复杂查询管理数据库事务遵循最佳实践SQLAlchemy还有更多高级特性,如混合属性、事件监听、自定义查询等,值得进一步探索学习。

2025-09-21 13:48:47 1085

原创 类型安全容器设计

重新排列范围,使得指定位置的元素等于排序后的元素,并且左边的元素都不大于它,右边的元素都不小于它。算法的原理是 “覆盖” 要删除的元素,将保留的元素移到前面,返回新的逻辑尾迭代器,但。对范围内的每个元素应用一个函数,并将结果存储在另一个范围内。移除范围内连续的重复元素,返回新的逻辑结尾迭代器。旋转范围内的元素,使中间元素成为新的第一个元素。这些算法不会改变它们所操作的容器中的元素。这些算法会修改它们所操作的容器中的元素。同时返回范围内的最小和最大元素的迭代器。返回范围内的最小/最大元素的迭代器。

2025-09-21 13:47:46 804

原创 C++中的状态模式高级应用

重新排列范围,使得指定位置的元素等于排序后的元素,并且左边的元素都不大于它,右边的元素都不小于它。算法的原理是 “覆盖” 要删除的元素,将保留的元素移到前面,返回新的逻辑尾迭代器,但。对范围内的每个元素应用一个函数,并将结果存储在另一个范围内。移除范围内连续的重复元素,返回新的逻辑结尾迭代器。旋转范围内的元素,使中间元素成为新的第一个元素。这些算法不会改变它们所操作的容器中的元素。这些算法会修改它们所操作的容器中的元素。同时返回范围内的最小和最大元素的迭代器。返回范围内的最小/最大元素的迭代器。

2025-09-21 13:46:44 810

原创 将Python Web应用部署到服务器(Docker + Nginx)

python# 创建基类# 定义一对多关系# 定义多对一关系# 定义多对多关系(通过关联表)# 关联表(用于多对多关系)SQLAlchemy ORM提供了强大而灵活的数据库操作方式,通过本文的介绍,您应该能够:安装和配置SQLAlchemy定义数据模型和关系执行基本的CRUD操作构建复杂查询管理数据库事务遵循最佳实践SQLAlchemy还有更多高级特性,如混合属性、事件监听、自定义查询等,值得进一步探索学习。

2025-09-21 13:45:43 1147 272

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除