正文共:999 字 18 图,预估阅读时间:1 分钟
前段时间在研究GPU多次遇到挫折(CentOS 7.9安装Tesla M4驱动、CUDA和cuDNN),考虑可能显卡太老是主要原因。经过查询,我笔记本的显卡MX250架构是Pascal,还领先Tesla M4一代。
而性能却只有Tesla M4的三分之一,不过可以验证一下安装的流程是不是可以跑的通。
这次操作的切入口是PyTorch,PyTorch是深度学习领域的开源学习库,能够帮助研究人员和开发者从头开始搭建复杂的深度学习模型,进行高效的训练和优化,并将训练好的模型部署到各种实际应用中。
上次用的Tensorflow也可能是因为版本问题验证不成功,所以我们本次按照PyTorch指导操作一下。
首先是操作系统,支持Windows 7、Windows Server 2008 R2及以上版本的操作系统,推荐使用Windows 10及更高版本,那就是用Windows 10专业版1909的补丁版来试一下。
1、安装操作系统
笔记本型号是机械革命S1 Pro,处理器是Core i5-8265U,16 GB运行内存,有集显UHD 620,独显型号为GeForce MX250。安装好操作系统之后信息如下:
查看系统自动安装的驱动程序为2019年的版本。
在NVIDIA控制面板中查看系统信息,组件中包含了CUDA,版本为10.2.95。
2、升级显卡驱动
到NVIDIA官网下载最新的驱动程序,只有GRD版本可选,并且不能指定CUDA版本。
下载完成之后,升级驱动程序,驱动程序日期为2024年2月15日。
在NVIDIA控制面板查看显卡信息,CUDA核心数为384个,全部图形内存有10GB,不知道能不能提升点性能。
升级后的CUDA版本也升级到了12.4.89,比CUDA能下载的最新版本12.3U2好像稍微高一点的样子。
3、安装CUDA和cuDNN
在PyTorch页面,可以看到Windows系统使用Conda(Anaconda)、Python 3.8以上环境,匹配稳定版的CUDA版本为11.8和12.1,都比12.4要低,那就选11.8试一下。
选择CUDA的11.8版本进行下载。
下载链接如下:
https://developer.download.nvidia.cn/compute/cuda/11.8.0/local_installers/cuda_11.8.0_522.06_windows.exe
按照提示完成CUDA的安装。
对于cuDNN,直接下载个最新版。
下载链接如下:
https://developer.download.nvidia.cn/compute/cudnn/9.0.0/local_installers/cudnn_9.0.0_windows.exe
按照提示完成cuDNN的安装。
都安装完成之后,还是使用nvcc -V命令查看CUDA是否安装成功。
4、安装anaconda
按照之前的操作(Windows部署TensorFlow后识别GPU失败,原因是啥?),先安装Anaconda,下载链接如下:
https://repo.anaconda.com/archive/Anaconda3-2023.09-0-Windows-x86_64.exe
PyTorch的安装命令在以下页面进行搭配选择。
https://pytorch.org/get-started/locally/
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
如果感觉下载速度慢,可以以管理员身份运行Anaconda,替换为国内源(TensorFlow识别GPU难道就这么难吗?还是我的GPU有问题?)。
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes
5、验证
安装完成之后,在Python命令行使用以下命令检查CUDA是否安装成功,返回值为True则说明CUDA安装成功。
import torch
print(torch.cuda.is_available())
再使用以下命令检查cuDNN是否安装成功,返回值为True则说明cuDNN安装成功。
from torch.backends import cudnn
print(cudnn. is_available( ))
不容易,又有一个小进展!
长按二维码
关注我们吧
CentOS 7.9安装Tesla M4驱动、CUDA和cuDNN
Windows Server调整策略实现999999个远程用户用时登录
将Juniper虚拟防火墙vSRX部署在ESXi进行简单测试
配置Juniper虚墙vSRX基于策略的IPsec VPN(WEB方式)
配置Juniper虚墙vSRX基于策略的IPsec VPN(CLI方式)
Ubuntu 23.10通过APT安装Open vSwitch