MX250笔记本安装Pytorch、CUDA和cuDNN

本文详细描述了作者在老旧MX250显卡上尝试安装CUDA11.8和cuDNN9.0.0,并通过PyTorch验证过程,以解决在CentOS7.9上安装TeslaM4驱动的挑战,以期提高显卡性能。
摘要由CSDN通过智能技术生成

95cbac33dc39869c5ca542b8b0be020f.gif

正文共:999 字 18 图,预估阅读时间:1 分钟

前段时间在研究GPU多次遇到挫折CentOS 7.9安装Tesla M4驱动、CUDA和cuDNN,考虑可能显卡太老是主要原因。经过查询,我笔记本的显卡MX250架构是Pascal,还领先Tesla M4一代。

7f475f11a7ad870d7a1b67ea639a0fd1.png

而性能却只有Tesla M4的三分之一,不过可以验证一下安装的流程是不是可以跑的通。

ec82e512b8bfbd5aab725ebbfa53b104.png

这次操作的切入口是PyTorch,PyTorch是深度学习领域的开源学习库,能够帮助研究人员和开发者从头开始搭建复杂的深度学习模型,进行高效的训练和优化,并将训练好的模型部署到各种实际应用中。

上次用的Tensorflow也可能是因为版本问题验证不成功,所以我们本次按照PyTorch指导操作一下。

首先是操作系统,支持Windows 7、Windows Server 2008 R2及以上版本的操作系统,推荐使用Windows 10及更高版本,那就是用Windows 10专业版1909的补丁版来试一下。

dc3fc167598853f209a87c8259ceac3a.png

1、安装操作系统

笔记本型号是机械革命S1 Pro,处理器是Core i5-8265U,16 GB运行内存,有集显UHD 620,独显型号为GeForce MX250。安装好操作系统之后信息如下:

ffd7c280090df774805e7a3de12b8f7f.jpeg

查看系统自动安装的驱动程序为2019年的版本。

56aa324aa17cd9aeeb64ed9613444e10.jpeg

在NVIDIA控制面板中查看系统信息,组件中包含了CUDA,版本为10.2.95。

6ee50fc532c6cbcd592237cb53a12db9.jpeg

c3ba816f8fdc468fe1306f94db8817c3.png

2、升级显卡驱动

到NVIDIA官网下载最新的驱动程序,只有GRD版本可选,并且不能指定CUDA版本。

1af1e8e8998f210c26697a835a7deb39.png

下载完成之后,升级驱动程序,驱动程序日期为2024年2月15日。

0873beab119c5bf49dac140b860c3d30.jpeg

在NVIDIA控制面板查看显卡信息,CUDA核心数为384个,全部图形内存有10GB,不知道能不能提升点性能。

b8daba4e7bcccd4bfbe794ded861e18d.png

升级后的CUDA版本也升级到了12.4.89,比CUDA能下载的最新版本12.3U2好像稍微高一点的样子。

b29cc987deeb105dde8cbac4de3e0c52.png

7980d87dc7a5016d6ef6de3948c430e2.png

3、安装CUDA和cuDNN

在PyTorch页面,可以看到Windows系统使用Conda(Anaconda)、Python 3.8以上环境,匹配稳定版的CUDA版本为11.8和12.1,都比12.4要低,那就选11.8试一下。

2cf0c3c008c2503739a05970216d6274.png

选择CUDA的11.8版本进行下载。

70664364d7e90dea6db521cdd4929d9f.png

下载链接如下:

https://developer.download.nvidia.cn/compute/cuda/11.8.0/local_installers/cuda_11.8.0_522.06_windows.exe

按照提示完成CUDA的安装。

f9eb7ce806634438b9186c3d0cee4871.png

对于cuDNN,直接下载个最新版。

5fbc34cd34d29c48b53fcda9f65c1e53.png

下载链接如下:

https://developer.download.nvidia.cn/compute/cudnn/9.0.0/local_installers/cudnn_9.0.0_windows.exe

按照提示完成cuDNN的安装。

2db69ef088eae798b5fb66b21a868926.png

都安装完成之后,还是使用nvcc -V命令查看CUDA是否安装成功。

4179bc7c10876e6cab6187711dcc5719.png

b7a7a05f2b78ae199bbc18b66cd92a93.png

4、安装anaconda

按照之前的操作Windows部署TensorFlow后识别GPU失败,原因是啥?,先安装Anaconda,下载链接如下:

https://repo.anaconda.com/archive/Anaconda3-2023.09-0-Windows-x86_64.exe

PyTorch的安装命令在以下页面进行搭配选择。

https://pytorch.org/get-started/locally/

904c95a19ec85a4b8670d1084fb0f71a.png

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

如果感觉下载速度慢,可以以管理员身份运行Anaconda,替换为国内源TensorFlow识别GPU难道就这么难吗?还是我的GPU有问题?

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes

543d5b057726a9c1ec9d888c3ec7304f.png

f8eb6e959be9f2468b8ac8e5e25fd3b5.png

5、验证

安装完成之后,在Python命令行使用以下命令检查CUDA是否安装成功,返回值为True则说明CUDA安装成功。

import torch
print(torch.cuda.is_available())

再使用以下命令检查cuDNN是否安装成功,返回值为True则说明cuDNN安装成功。

from torch.backends import cudnn
print(cudnn. is_available( ))

e867c8e6b78d1a14b035550d0a682cb6.png

不容易,又有一个小进展!

9e1dcdd51c1f5e7c46334d994342b694.gif

长按二维码
关注我们吧

fe6d9af7eef9f6bf299d5017cfa303b0.jpeg

ec1093ec91264a5863b0f33ef7e1438c.png

CentOS 7.9安装Tesla M4驱动、CUDA和cuDNN

使用Python脚本实现SSH登录设备

CentOS 7配置Bonding网卡绑定

小测一下HCL中VSR的转发性能

网络之路28:二层链路聚合

H3C交换机S6850配置M-LAG基本功能

Windows Server调整策略实现999999个远程用户用时登录

Juniper虚拟防火墙vSRX部署初体验

将Juniper虚拟防火墙vSRX部署在ESXi进行简单测试

将Juniper虚拟防火墙vSRX导入EVE-NG

L2TP访问失败?快看看是不是NAT网关的ALG搞的鬼

Juniper虚拟防火墙vSRX配置防火墙策略实现业务转发

配置Juniper虚墙vSRX基于策略的IPsec VPN(WEB方式)

配置Juniper虚墙vSRX基于策略的IPsec VPN(CLI方式)

配置VMware实现从服务器到虚拟机的一键启动脚本

Ubuntu 23.10通过APT安装Open vSwitch

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Danileaf_Guo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值