注:看每道题后面的参考连接,大神写的特别好。
这一类问题都需要先画出树形图,然后编码实现。编码通过 深度优先遍历 实现,使用一个列表,在 深度优先遍历 变化的过程中,遍历所有可能的列表并判断当前列表是否符合题目的要求,成为「回溯算法」。
46. 全排列
给定一个 没有重复 数字的序列,返回其所有可能的全排列。
输入:nums = [1,2,3] 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
以数组 [1, 2, 3] 的全排列为例。
- 先写以 11 开头的全排列,它们是:[1, 2, 3], [1, 3, 2],即 1 + [2, 3] 的全排列(注意:递归结构体现在这里);
- 再写以 22 开头的全排列,它们是:[2, 1, 3], [2, 3, 1],即 2 + [1, 3] 的全排列;
- 最后写以 33 开头的全排列,它们是:[3, 1, 2], [3, 2, 1],即 3 + [1, 2] 的全排列。
按顺序枚举每一位可能出现的情况,已经选择的数字在 当前 要选择的数字中不能出现。按照这种策略搜索就能够做到 不重不漏。
设计状态变量
- 首先这棵树除了根结点和叶子结点以外,每一个结点做的事情其实是一样的,即:在已经选择了一些数的前提下,在剩下的还没有选择的数中,依次选择一个数,这显然是一个 递归 结构;
- 递归的终止条件是: 一个排列中的数字已经选够了 ,因此我们需要一个变量来表示当前程序递归到第几层,我们把这个变量叫做 depth,或者命名为 index ,表示当前要确定的是某个全排列中下标为 index 的那个数是多少;
- 布尔数组 used,初始化的时候都为 false 表示这些数还没有被选择,当我们选定一个数的时候,就将这个数组的相应位置设置为 true ,这样在考虑下一个位置的时候,就能够以 O(1)O(1) 的时间复杂度判断这个数是否被选择过,这是一种「以空间换时间」的思想。
class Solution {
public List<List<Integer>> permute(int[] nums) {
/*
定义状态变量:
1.depth:递归到第几层
2.path:已经选了哪些数
3.used:布尔数组,这个数是否已经使用
*/
List<List<Integer>> res = new ArrayList<>();
//输入数组长度
int len = nums.length;
if(len == 0){
return res;
}
Deque<Integer> path = new ArrayDeque<>();
boolean[] used = new boolean[len];
//dfs(输入数组,输入数组长度,当前一共选择了几个数(初始化为0),从根节点到任意节点列表(这是一个栈),布尔数组,最终结果)
dfs(nums, len, 0, path, used, res);
return res;
}
private void dfs(int[] nums, int len, int depth, Deque<Integer> path, boolean[] used, List<List<Integer>> res){
//递归终止条件,层数=输入数组大小
if(depth == len){
res.add(new ArrayList<>(path));
return;
}
for(int i=0;i<len;i++){
if(used[i]){
continue;
}
path.addLast(nums[i]);
used[i] = true;
dfs(nums,len,depth+1,path,