Z fourize laplas transform

fourier变换是将连续的时间域信号转变到频率域;它可以说是laplace变换的特例,laplace变换是fourier变换的推广,存在条件比fourier变换要宽,是将连续的时间域信号变换到复频率域(整个复平面,而fourier变换此时可看成仅在jΩ轴);z变换则是连续信号经过理想采样之后的离散信号的laplace变换,再令z=e^sT时的变换结果(T为采样周期),所对应的域为数字复频率域,此时数字频率ω=ΩT。


Laplace变换是将时域信号变换到“复频域”,与Fourier变换的“频域”有所区别。
FT[f(t)]=从负无穷到正无穷对[f(t)exp(-jwt)]积分
LT[f(t)]=从零到正无穷对[f(t)exp(-st)]积分
(由于实际应用,通常只做单边Laplace变换,即积分从零开始)
具体地,在Fourier积分变换中,所乘因子为exp(-jwt),此处,-jwt显然是为一纯虚数;
而在laplace变换中,所乘因子为exp(-st),其中s为一复数:s=D+jw,jw是为虚部,相当于Fourier变换中的jwt,而D则是实部,作为衰减因子,这样就能将许多无法作Fourier变换的函数(比如exp(at),a>0)做域变换。


Laplace变换主要用于电路分析,作为解微分方程的强有力工具(将微积分运算转化为乘除运算)。但随着CAD的兴起,这一作用已不怎么受重视了,但关于其收敛域的分析(零极点图)依然常用。
Fourier变换则随着FFT算法(快速傅立叶变换)的发展已经成为最重要的数学工具应用于数字信号处理领域。


而Z变换,简单地说,就是离散信号(也可以叫做序列)的Laplace变换,可由抽样信号的Laplace变换导出(如果你想要更多,我可以导给你看),表示式如下:
ZT[f(n)]=从n为负无穷到正无穷对[f(n)Z^(-n)]求和
其所变换的域称之为“Z域”。




傅里叶变换简单通俗理解就是把看似杂乱无章的信号考虑成由一定振幅、相位、频率的基本正弦(余弦)信号组合而成,傅里叶变换的目的就是找出这些基本正弦(余弦)信号中振幅较大(能量较高)信号对应的频率,从而找出杂乱无章的信号中的主要振动频率特点。 
拉普拉斯变换 
定义式:设有一时间函数f(t) [0,∞] 或 0≤t≤∞单边函数 


其中,S=σ+jω 是复参变量,称为复频率。 
左端的定积分称为拉普拉斯积分,又称为f(t)的拉普拉斯变换; 
右端的F(S)是拉普拉斯积分的结果,此积分把时域中的单边函数f(t)变换为以复频率S为自变量的复频域函数F(S),称为f(t)的拉普拉斯象函数。 
以上的拉普拉斯变换是对单边函数的拉普拉斯变换,称为单边拉普拉斯变换。 
如f(t)是定义在整个时间轴上的函数,可将其乘以单位阶跃函数,即变为f(t)ε(t),则拉普拉斯变换为F(s),=mathcal left =int_ ^infty f(t),e^ ,dt 
其中积分下标取0-而不是0或0+ ,是为了将冲激函数δ(t)及其导函数纳入拉普拉斯变换的范围。 
z变换可将分散的信号(现在主要用于数字信号)从时域转换到频域。作用和拉普拉斯变换(将连续的信号从时域转换到频域)是一样的。
希尔伯特变换 
一物理可实现系统其传递函数为一解析函数,而其冲激响应必为因果函数(即时,冲击响应为0)。也就是说时域的因果性与频域得解析性是等效的。




傅立叶变换是拉普拉斯变换的一种特例,在拉普拉斯变换中,只要令Re[s]=1,就得到傅立叶变换。当然,两者可以转换的前提是信号的拉普拉斯变换的收敛域要包含单位圆(即包含圆周上的点)。 
很多信号都不一定有傅立叶变换,因为狄力克雷条件比较苛刻,而绝大多数信号都有拉普拉斯变换。故对于连续信号,拉普拉斯变换比傅立叶变换用得更广泛。
傅立叶变换 
中文译名 


Transformée de Fourier有多种中文译名,常见的有“傅里叶变换”、“傅立叶变换”、“付立叶变换”、“富里叶变换”、“富里哀变换”等等。为方便起见,本文统一写作“傅里叶变换”。 


应用 


傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。 


概要介绍 


* 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的(参见:林家翘、西格尔著《自然科学中确定性问题的应用数学》,科学出版社,北京。原版书名为 C. C. Lin & L. A. Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences, Macmillan Inc., New York, 1974)。 


* 傅里叶变换属于谐波分析。 


* 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; 


* 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; 


* 卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 


* 离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT)). 


基本性质 


线性性质 


两函数之和的傅里叶变换等于各自变换之和。数学描述是:若函数f \left( x\right )和g \left(x \right)的傅里叶变换\mathcal[f]和\mathcal[g]都存在,α 和 β 为任意常系数,则\mathcal[\alpha f+\beta g]=\alpha\mathcal[f]+\beta\mathcal[g];傅里叶变换算符\mathcal可经归一化成为么正算符; 


频移性质 


若函数f \left( x\right )存在傅里叶变换,则对任意实数 ω0,函数f(x) e^{i \omega_ x}也存在傅里叶变换,且有\mathcal[f(x)e^{i \omega_ x}]=F(\omega + \omega _0 ) 。式中花体\mathcal是傅里叶变换的作用算子,平体F表示变换的结果(复函数),e 为自然对数的底,i 为虚数单位\sqrt; 


微分关系 


若函数f \left( x\right )当|x|\rightarrow\infty时的极限为0,而其导函数f'(x)的傅里叶变换存在,则有\mathcal[f'(x)]=-i \omega \mathcal[f(x)] ,即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子 − iω 。更一般地,若f(\pm\infty)=f'(\pm\infty)=\ldots=f^{(k-1)}(\pm\infty)=0,且\mathcal[f^{(k)}(x)]存在,则\mathcal[f^{(k)}(x)]=(-i \omega)^ \mathcal[f] ,即 k 阶导数的傅里叶变换等于原函数的傅里叶变换乘以因子( − iω)k。 


卷积特性 


若函数f \left( x\right )及g \left( x\right )都在(-\infty,+\infty)上绝对可积,则卷积函数f*g=\int_{-\infty}^{+\infty} f(x-\xi)g(\xi)d\xi的傅里叶变换存在,且\mathcal[f*g]=\mathcal[f]\cdot\mathcal[g] 。卷积性质的逆形式为\mathcal^[F(\omega)G(\omega)]=\mathcal^[F(\omega)]*\mathcal^[G(\omega)] ,即两个函数乘积的傅里叶逆变换等于它们各自的傅里叶逆变换的卷积。 


Parseval定理 


若函数f \left( x\right )可积且平方可积,则\int_{-\infty}^{+\infty} f^2 (x)dx = \frac{2\pi}\int_{-\infty}^{+\infty} |F(\omega)|^d\omega 。其中 F(ω) 是 f(x) 的傅里叶变换。 


傅里叶变换的不同变种 


连续傅里叶变换 


主条目:连续傅立叶变换 


一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅里叶变换”。“连续傅里叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式。 


f(t) = \mathcal^[F(\omega)] = \frac{\sqrt{2\pi}} \int\limits_{-\infty}^\infty F(\omega) e^{i\omega t}\,d\omega. 


上式其实表示的是连续傅里叶变换的逆变换,即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。反过来,其正变换恰好是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅立叶变换对(transform pair)。 


一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。 


当f(t)为奇函数(或偶函数)时,其余弦(或正弦)分量将消亡,而可以称这时的变换为余弦转换(cosine transform) 或 正弦转换(sine transform). 


另一个值得注意的性质是,当f(t) 为纯实函数时,F(−ω) = F(ω)*成立. 


傅里叶级数 


主条目:傅里叶级数 


连续形式的傅里叶变换其实是傅里叶级数的推广,因为积分其实是一种极限形式的求和算子而已。对于周期函数,其傅里叶级数是存在的: 


f(x) = \sum_{n=-\infty}^{\infty} F_n \,e^ , 


其中Fn 为复振幅。对于实值函数,函数的傅里叶级数可以写成: 


f(x) = \fraca_0 + \sum_{n=1}^\infty\left[a_n\cos(nx)+b_n\sin(nx)\right], 


其中an和bn是实频率分量的振幅。 


离散时间傅里叶变换 


主条目:离散时间傅里叶变换 


离散傅里叶变换是离散时间傅里叶变换(DTFT)的特例(有时作为后者的近似)。DTFT在时域上离散,在频域上则是周期的。DTFT可以被看作是傅里叶级数的逆。 


离散傅里叶变换 


主条目:离散傅里叶变换 


为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数xn 定义在离散点而非连续域内,且须满足有限性或周期性条件。这种情况下, 使用离散傅里叶变换,将函数 xn 表示为下面的求和形式: 


x_n = \frac1 \sum_{k=0}^ X_k e^{i\frac{2\pi} kn} \qquad n = 0,\dots,N-1 


其中Xk是傅里叶振幅。直接使用这个公式计算的计算复杂度为\mathcal(n^2),而快速傅里叶变换(FFT)可以将复杂度改进为\mathcal(n \log n)。计算复杂度的降低以及数字电路计算能力的发展使得DFT成为在信号处理领域十分实用且重要的方法。 


在阿贝尔群上的统一描述 


以上各种傅里叶变换可以被更统一的表述成任意局部紧致的阿贝尔群上的傅里叶变换。这一问题属于调和分析的范畴。在调和分析中, 一个变换从一个群变换到它的对偶群(dual group)。此外,将傅里叶变换与卷积相联系的卷积定理在调和分析中也有类似的结论。傅里叶变换的广义理论基础参见庞特里雅金对偶性(英文版)中的介绍。 


时频分析变换 


主条目:时频分析变换 


小波变换,chirplet转换和分数傅里叶转换试图得到时间信号的频率信息。同时解析频率和时间的能力在数学上受不确定性原理的限制。 


傅里叶变换家族 


下表列出了傅里叶变换家族的成员. 容易发现,函数在时(频)域的离散对应于其像函数在频(时)域的周期性.反之连续则意味着在对应域的信号的非周期性. 


变换 时间 频率 


连续傅里叶变换 连续, 非周期性 连续, 非周期性 


傅里叶级数 连续, 周期性 离散, 非周期性 


离散时间傅里叶变换 离散, 非周期性 连续, 周期性 


离散傅里叶变换 离散, 周期性 离散, 周期性 


傅里叶变换的基本思想首先由法国学者傅里叶系统提出,所以以其名字来命名以示纪念。 


从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 
傅立叶变换属于调和分析的内容。"分析"二字,可以解释为深入的研究。从字面上来看,"分析"二字,实际就是"条分缕析"而已。它通过对函数的"条分缕析"来达到对复杂函数的深入理解和研究。从哲学上看,"分析主义"和"还原主义",就是要通过对事物内部适当的分析达到增进对其本质理解的目的。比如近代原子论试图把世界上所有物质的本源分析为原子,而原子不过数百种而已,相对物质世界的无限丰富,这种分析和分类无疑为认识事物的各种性质提供了很好的手段。 
在数学领域,也是这样,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅立叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇: 
1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子; 
2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似; 
3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; 
4. 著名的卷积定理指出:傅立叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 
5. 离散形式的傅立叶变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT)). 
正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 


拉普拉斯变换 
拉普拉斯变换(英文:Laplace Transform),是工程数学中常用的一种积分变换。 


如果定义: 


f(t),是一个关于t,的函数,使得当t<0,时候,f(t)=0,; 


s, 是一个复变量; 


mathcal 是一个运算符号,它代表对其对象进行拉普拉斯积分int_0^infty e^ ,dt;F(s),是f(t),的拉普拉斯变换结果。 


则f(t),的拉普拉斯变换由下列式子给出: 


F(s),=mathcal left =int_ ^infty f(t),e^ ,dt 


拉普拉斯逆变换,是已知F(s),,求解f(t),的过程。用符号 mathcal ^ ,表示。 


拉普拉斯逆变换的公式是: 


对于所有的t>0,; 


f(t) 


= mathcal ^ left 


=frac int_ ^ F(s),e^ ,ds 


c,是收敛区间的横坐标值,是一个实常数且大于所有F(s),的个别点的实部值。 
为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。 


用 f(t)表示实变量t的一个函数,F(s)表示它的拉普拉斯变换,它是复变量s=σ+j&owega;的一个函数,其中σ和&owega; 均为实变数,j2=-1。F(s)和f(t)间的关系由下面定义的积分所确定: 


如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为ft=L-1[F(s)]。 


函数变换对和运算变换性质 利用定义积分,很容易建立起原函数 f(t)和象函数 F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系。表1和表2分别列出了最常用的一些函数变换对和运算变换性质。




傅里叶变换是在频域分析,拉氏是对连续信号的S域分析,Z变换是对离散信号的变换域分析,傅氏是后两者的基础,后两者作用条件比傅氏宽松,可以用于不收敛的信号分析




先想象一个复平面,拉普拉斯变换在上面,s取虚轴就是傅里叶变换

再想象把虚轴弯成一个圆,2π的周期将他重叠起来,就是极坐标下,Z变换,极径=1,也就是单位圆上的变换就是傅里叶变换,Z与拉普拉斯的关系自然就是Z=e^st


DFT DTFT 区别



离散时间傅里叶变换有时也称为序列傅里叶变换。离散时间傅里叶变换实质上就是单位圆上的(双边)Z变换。当时域信号为连续信号时,用连续时间傅里叶变换;为离散信号时,用离散时间傅里叶变换。
离散时间傅里叶变换(DTFT,Discrete Time Fourier Transform)使我们能够在频域(数字频域)分析离散时间信号的频谱和离散系统的频响特性。但还存在两个实际问题。
1. 数字频率 是一个模拟量,为了便于今后用数字的方法进行分析和处理,仅仅在时域将时间变量t离散化还不够,还必须在频域将数字频率离散化。
2. 实际的序列大多为无限长的,为了分析和处理的方便,必须把无限长序列截断或分段,化作有限长序列来处理。


DTFT是对任意序列的傅里叶分析,它的频谱是一个连续函数;而DFT是把有限长序列作为周期序列的一个周期,对有限长序列的傅里叶分析,DFT的特点是无论在时域还是频域都是有限长序列。
DFT提供了使用计算机来分析信号和系统的一种方法,尤其是DFT的快速算法FFT,在许多科学技术领域中得到了广泛的应用,并推动了数字信号处理技术的迅速发展。


这个教科书都会讲啊,就是模拟信号的抽样信号的傅立叶变换,应该与离散时间信号的DTFT相等。




1》x(n) 做DTFT(离散时间信号的傅里叶变换)得X(ejω),它是连续周期的。
2》对X(ejω)采样,造成x(n)周期沿拓。即DFS变换对:X1(k)→x1(n)。X1(k)是X(ejω)采样后的序列,也是周期的。x1(n)是x(n)周期延拓后的序列。
3》对DFS变换对 各取一个周期就得到DFT变换对。正因为此DFT隐含有周期性。


序列的傅立叶变换(DTFT)与离散傅立叶变换(DFT)是两个不同的定义(他们的关系从上可知),计算公式不一样。两者变换后一般是复数,纵轴可以代表幅度,也可带变相位,即有幅度谱和相位谱。当然也能按实部,虚部分。
提问者评价
离散时间信号的傅里叶,由于时域是非周期导致频域连续。刚说错了,下午我往后看了下书,果然是这么回事。


DTFT是离散时间傅里叶变换,针对的是连续的信号和频谱。


DFT是离散傅里叶变换,针对的是离散的信号和频谱。


DFT是DTFT变化而来,其实就是将连续时间t变成了nT. 为什么要这样做呢,因为计算机是在数字环境下工作的,它不可能看见或者处理现实中连续的信号,只能够进行离散计算,在真实性上尽可能地逼近连续信号。所以DFT是为了我们能够去用工具分析信号而创造出来的,通常我们直接用DTFT的机会很少。


DFT和DTFT都是频域上的分析,至于Z变换,是在时域上的分析,我们习惯叫Z域。Z变换主要的作用是通过分析信号或者脉冲响应的零点和极点,来得知其稳定性和时域上的特性。 


对信号处理来首,时域和频域上的分析和处理都是必须的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值