Playwright MCP 入门实战:自动化测试与 Copilot 集成指南

什么是 MCP?

MCP(Model Context Protocol) 是一种为大语言模型(LLM)设计的协议,MCP充当 LLM 与实际应用之间的桥梁或“翻译器”,将自然语言转化为结构化指令,使得模型可以更精确、高效地控制外部行为。

通过 MCP,大语言模型可以像调用 API 一样发出导航、点击、输入等指令,并接收结构化反馈,极大增强了模型的上下文理解与操作能力。

什么是Playwright MCP

Playwright mcp是一个主要依赖于浏览器的可访问树的web自动化测试能力的MCP Server,它允许使用LLM大模型使用结构化命令控制网页浏览器,从而可以快速且更准确的操作浏览器,非常适合网页导航、表单填写、数据提取和自动化测试等任务。

Playwright MCP 的主要优势:

  • ✅ 快速响应:基于结构化命令,交互更轻量
  • ✅ 高确定性:避免自然语言歧义,执行结果更可靠
  • ✅ 易于集成:适用于 Copilot、Cursor 等 AI 编程工具
  • ✅ 便于调试:多客户端可共享一个浏览器上下文

设置Playwright MCP Server

Prerequisites

  • Node.js installed (v16 or later)
  • Playwright installed

安装

  1. 安装Playwright MCP

    npm install -g @playwright/mcp
    
  2. 验证安装成功

    npx @playwright/mcp --version
    
  3. 启动mcp server

    npx @playwright/mcp@latest --port 8931
    

    服务启动后可以看到以下输出


在VS Code中通过Github Copilot集成

第一步:添加 MCP 服务

  • 按下 Ctrl + Shift + P(macOS 为 Cmd + Shift + P)打开命令面板。

  • 搜索并选择:“MCP: Add MCP Server”

  • 选择服务类型为 HTTP Server

  • 在 URL 输入框中填写 MCP Server 地址(默认 SSE 模式):

    
    <http://localhost:8931/sse>
    
  • 回车确认,配置文件保存位置选择用户区或工作区均可。

  • 操作完成后,你会在 settings.json.vscode/mcp.json 中看到如下内容:

    // Example .vscode/mcp.json
    {
        "servers": {
          "my-remote-server": {
            "type": "sse",
            "url": "<http://localhost:8931/sse>",
          }
        }
    }
    
  • 点击启动后,VS Code 会自动识别 到可用的MCP 服务

第二步 使用 GitHub Copilot + Playwright MCP 实现 AI 控制浏览器

打开 GitHub Copilot Chat 窗口,切换为“代理模式”,点击 MCP 工具图标可以看到Playwright MCP提供了如下浏览器操作的工具

示例:通过 LLM Prompt 控制浏览器

Step 1:导航到百度

Prompt:

"Navigate to 百度一下,你就知道."

效果如下,MCP 成功控制浏览器跳转至百度并读取页面标题:

Step 2:执行搜索操作

Prompt:

"Search playwright in 百度一下,你就知道."

AI 会自动识别搜索框和按钮,并完成搜索动作,页面更新为搜索结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值