2020 JAN BRONZE 2.Photoshoot

描述


  Farmer John 在给他编号为 1…N 的 N 头奶牛排队拍照(2≤N≤103)。FJ 一开始计划从左向右数第 i 个位置排编号为 ai 的奶牛,他在一张纸上写下了排列 a1,a2,…,aN。不幸的是,这张纸刚刚被 Farmer Nhoj 偷走了!

  幸好 FJ 仍然有机会恢复他之前写下的排列。在这张纸被偷走之前,Bessie 记录了序列 b1,b2,…,bN-1,对于每一个1≤ii=ai+ai+1。

  基于 Bessie 的信息,帮助 FJ 恢复可以产生序列 b 的“字典序最小”的排列 a。排列 x 字典序小于排列 y,如果对于某个 j,对于所有 xi=yi,且有 xj<yj(换句话说,这两个排列到某个位置之前都相同,在这个位置上 x 小于 y)。保证存在至少一个满足条件的 a。

测试点性质:
  • 测试点 2-4 满足 N≤8。
  • 测试点 5-10 没有额外限制。


输入
输入的第一行包含一个整数 N。

第二行包含 N-1 个空格分隔的整数 b1,b2,…,bN-1。
输出
输出一行,包含 N 个空格分隔的整数 a1,a2,…,aN。
样例输入
5
4 6 7 6
样例输出
3 1 5 2 4
提示
a 能够产生 b,因为 3+1=4,1+5=6,5+2=7,2+4=6。


分析

解法一、暴力枚举(真能过)

解法二、set+枚举

公式变形 
b2=a2+a3 b3=a3+a4
b3-b2=a4-a2 a2–>已知 b2-b1=a3-a1–> a3=b2-b1+a1
a数组里不能有重复的元素,那就用set容器存储某些结果

解法三、dfs


代码
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1e5+10;
int n;
int a[N],b[N],s[N];
int main()
{
    cin>>n;
    bool flag=false;
    for (int i = 0; i < n-1; i ++ )cin>>b[i];
    for (int i = 1; i <= n; i ++ )
    {
        memset(s, 0, sizeof s);
        a[0]=i;//从1开始枚举
        s[i]=1;//标记
        for (int j = 0; j < n-1; j ++ )
        {
            int x=b[j]-a[j];//a[j+1]的可能值
            if(x<=0||s[x])break;
            else 
            {
                a[j+1]=x;//赋值
                s[x]++;
                if(j+1==n-1)//a数组存在,因为是从小开始枚举,此时一定是字典序最小
                {
                    for (int i = 0; i < n; i ++ )
                    cout<<a[i]<<' ';
                    return 0;
                }
            }
        }
    }
    return 0;
}

一位大佬的解法

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1010;
int n , a[N] , b[N];
bool st[N];
bool dfs(int idx){  //idx为当前枚举的位置
    if(idx==n)return true;//第一次出来的就是字典序最小的了
    for (int i = 1; i <= b[idx]; i ++ ) //枚举a[idx]可能的大小
    if(!st[i] && a[idx-1]+i==b[idx]){   //i这个数字没有出现过 和 前面确定的数字和目前数字和为b[idx]
        st[i]=true;
        a[idx]=i;
        if(dfs(idx+1))return true;
        st[i]=false;
    }
    return false;
}
int main(){
    cin>>n;
    for (int i = 1; i <= n - 1; i ++ )scanf("%d",&b[i]);
    for (int i = 1; i <= b[1]; i ++ ){
        st[i]=true;
        a[0] =i;
        if(dfs(1)){
            for (int j = 0; j < n; j ++ )
                cout<<a[j]<<" ";
            return 0;
        }
        st[i]=false;
    }
}

给个赞和关注吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值