POJ - 3074(DancingLink)(数独)

题目:POJ - 3074 

In the game of Sudoku, you are given a large 9 × 9 grid divided into smaller 3 × 3 subgrids. For example,

.2738..1.
.1...6735
.......29
3.5692.8.
.........
.6.1745.3
64.......
9518...7.
.8..6534.

Given some of the numbers in the grid, your goal is to determine the remaining numbers such that the numbers 1 through 9 appear exactly once in (1) each of nine 3 × 3 subgrids, (2) each of the nine rows, and (3) each of the nine columns.

Input

The input test file will contain multiple cases. Each test case consists of a single line containing 81 characters, which represent the 81 squares of the Sudoku grid, given one row at a time. Each character is either a digit (from 1 to 9) or a period (used to indicate an unfilled square). You may assume that each puzzle in the input will have exactly one solution. The end-of-file is denoted by a single line containing the word “end”.

Output

For each test case, print a line representing the completed Sudoku puzzle.

Sample Input

.2738..1..1...6735.......293.5692.8...........6.1745.364.......9518...7..8..6534.
......52..8.4......3...9...5.1...6..2..7........3.....6...1..........7.4.......3.
end

Sample Output

527389416819426735436751829375692184194538267268174593643217958951843672782965341
416837529982465371735129468571298643293746185864351297647913852359682714128574936

 

分析:行:每个格子可以放9种,共有9 * 9 个格子,所以行的数目为:9 * 9 * 9;

列:每个格子有四种状态:(1)这个格子有x;(2)这一行有 x;(3)这一列有x;(4)这个9宫格有x;

所以共有 N * N* 4列;

#include <iostream>
#include <stdio.h>
#include <string.h>

using namespace std;

const int N = 9;
const int maxn = N * N * N + 10;
const int maxnode = maxn * 4 + maxn + 10;
char g[maxn];
struct DLX
{
    int n,m,sz;
    int U[maxnode],D[maxnode],R[maxnode],L[maxnode],Row[maxnode],Col[maxnode];
    int H[maxn],S[maxn];
    int ansd,ans[maxn];
    void init(int _n,int _m)
    {
        n = _n;
        m = _m;
        for(int i = 0;i <= m;i ++)
        {
            S[i] = 0;
            U[i] = D[i] = i;
            L[i] = i - 1;
            R[i] = i + 1;
        }
        R[m] = 0;
        L[0] = m;
        sz = m;
        for(int i = 1;i <= n;i ++)
        {
            H[i] = -1;
        }
    }

    void Link(int r,int c)
    {
        ++ S[Col[++ sz] = c];
        Row[sz] = r;
        D[sz] = D[c];
        U[D[c]] = sz;
        U[sz] = c;
        D[c] = sz;
        if(H[r] < 0) H[r] = L[sz] = R[sz] = sz;
        else
        {
            R[sz] = R[H[r]];
            L[R[H[r]]] = sz;
            L[sz] = H[r];
            R[H[r]] = sz;
        }
    }

    void Remove(int c)
    {
        L[R[c]] = L[c];
        R[L[c]] = R[c];
        for(int i = D[c];i != c;i = D[i])
        {
            for(int j = R[i];j != i;j = R[j])
            {
                U[D[j]] = U[j];
                D[U[j]] = D[j];
                -- S[Col[j]];
            }
        }
    }

    void resume(int c)
    {
        for(int i = U[c];i != c;i = U[i])
        {
            for(int j = L[i];j != i;j = L[j])
            {
                ++ S[Col[U[D[j]] = D[U[j]] = j]];
            }
        }
        L[R[c]] = R[L[c]] = c;
    }

    bool Dance(int d)
    {
        if(R[0] == 0)
        {
            for(int i = 0;i < d;i ++)
            {
                g[(ans[i] - 1) / 9] = (ans[i] - 1) % 9 + '1';
            }
            for(int i = 0;i < N * N;i ++)
            {
                printf("%c",g[i]);
            }
            printf("\n");
            return true;
        }
        int c = R[0];
        for(int i = R[0];i != 0;i = R[i])
        {
            if(S[i] < S[c])
                c = i;
        }
        Remove(c);
        for(int i = D[c];i != c;i = D[i])
        {
            ans[d] = Row[i];
            for(int j = R[i]; j != i;j = R[j]) Remove(Col[j]);
            if(Dance(d + 1)) return true;
            for(int j = L[i];j != i;j = L[j]) resume(Col[j]);
        }
        resume(c);
        return false;
    }
};

void place(int &r,int &c1,int &c2,int &c3,int &c4,int i,int j,int k)
{
    r = (i * N + j) * N + k;
    c1 = i * N + j + 1;
    c2 = N * N + i * N + k;
    c3 = N * N * 2 + j * N + k;
    c4 = N * N * 3 + ((i / 3) * 3 + (j / 3)) * N + k;
}

DLX dlx;

int main()
{
    while(scanf("%s",g) == 1)
    {
        if(strcmp(g,"end") == 0) break;
        dlx.init(N * N * N, N * N * 4);
        int r,c1,c2,c3,c4;
        for(int i = 0;i < N;i ++)
        {
            for(int j = 0;j < N;j ++)
            {
                for(int k = 1;k <= N;k ++)
                {
                    if(g[i * N + j] == '.' || g[i * N + j] == '0' + k)
                    {
                        place(r,c1,c2,c3,c4,i,j,k);
                        dlx.Link(r,c1);
                        dlx.Link(r,c2);
                        dlx.Link(r,c3);
                        dlx.Link(r,c4);
                    }
                }
            }
        }
        dlx.Dance(0);
    }
    return 0;
}
/*
.2738..1..1...6735.......293.5692.8...........6.1745.364.......9518...7..8..6534.......52..8.4......3...9...5.1...6..2..7........3.....6...1..........7.4.......3.
end
*/

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值