杭电acm1046 Gridland

杭电acm1046

                                            Gridland

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2113    Accepted Submission(s): 1011


Problem Description
For years, computer scientists have been trying to find efficient solutions to different computing problems. For some of them efficient algorithms are already 
available, these are the “easy” problems like sorting, evaluating a polynomial or finding the shortest path in a graph. For the “hard” ones only exponential-time algorithms are known. The traveling-salesman problem belongs to this latter group. Given a set of N towns and roads between these towns, the problem is to compute the shortest path allowing 
a salesman to visit each of the towns once and only once and return to the starting point.

The president of Gridland has hired you to design a program that calculates the length of the shortest traveling-salesman tour for the towns in the country. In Gridland, there is one town at each of the points of a rectangular grid. Roads run from every town in the directions 
North, Northwest, West, Southwest, South, Southeast, East, and Northeast, provided that there is a neighbouring town in that direction. The distance between 
neighbouring towns in directions North–South or East–West is 1 unit. The length of the roads is measured by the Euclidean distance. For example, 
Figure 7 shows 2 × 3-Gridland, i.e., a rectangular grid of dimensions 2 by 3. In 2 × 3-Gridland, the shortest tour has length 6. 


 


Input
The first line contains the number of scenarios.

For each scenario, the grid dimensions m and n will be given as two integer numbers in a single line, separated by a single blank, satisfying 
1 < m < 50 and 1 < n < 50.
 


Output
The output for each scenario begins with a line containing “Scenario #i:”, where i is the number of the scenario starting at 1. In the next line, print the
 length of the shortest traveling-salesman tour rounded to two decimal digits. The output for every scenario ends with a blank line.
 


Sample Input
  
  
22 22 3
 


Sample Output
  
  
Scenario #1:4.00Scenario #2:6.00
 


Source
 
 
 
 实现代码如下:
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
 int m,n;
 int Num,i=1;
 cin>>Num;
 while(Num--)
 {
  cin>>m>>n;
  if(m<=1 && m>=50 && n<=1 && n>=50)
   return 0;
  cout<<"Scenario #"<<i++<<":"<<endl;
  if( m%2==0 || n%2==0)
   cout<<setiosflags(ios::fixed)<<setprecision(2)<<(double)m*n<<endl;
  else
   cout<<setiosflags(ios::fixed)<<setprecision(2)<<(double)(m*n+0.414)<<endl;
  cout<<endl;
 }
 return 0;
}
 
 
算法思想:自己在纸上画一下,可观察到:
比如4X4的是最短是16, 3*3的最短是9.41, 3*4的是12,等等。
容易找出规律:如果m和n中只要有一个是偶数,那么最短路径就是m*n,否者 为m*n -1 + (2的平方根)=m*n + 0.414。知道了算法,程序就很简单了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值