- 博客(4)
- 收藏
- 关注
原创 多类分割mask,如何转彩色图像并保存
项目场景:需要把多类分割的结果mask,转为彩图可视化保存下来问题描述:如何处理mask?如何进行颜色转换?如何保存?解决方案:1、模型的最后一层:self.conv12 = nn.Conv2d(M, num_classes, 1, 1, 0)网络的输出:outputs = self.model(img)#维度是batch, num_classes, h, w2、outputs此时还是num_classes通道的,还不是最终的mask:mask = output
2020-10-12 10:45:37 4251 2
原创 在windows系统上使用labelme进行标注
项目场景:我要标注实例分割的label问题描述:怎么去配置好这个工具labelme呢?很多困难!解决方案:1、选择在windows上,因为linux需要sudo啊。所以果断选择windows。2、又安装了一次conda.不过这次我装的是miniconda,毕竟自己电脑压力小点。3、开始创一个新环境。但这里我都两个小时过去了,python装一半就断掉。所以配置下载源。https://www.cnblogs.com/templeminer/p/12572452.html4、文件.
2020-10-10 12:41:30 161
原创 深度学习图像的一些处理--持续更新
项目场景:深度学习输入图像的处理问题描述:处理有多种:去均值、归一化、标准化。但该怎么选择呢?解决方案:这里是去均值的方案:包括原因分析https://blog.csdn.net/weixin_37251044/article/details/81157344#fn:2D是ng样本和ok样本,为了找ng样本中的缺陷,可能求出ok样本的均值在这里会更加适合吧?还是得靠实验说话!...
2020-10-09 15:51:15 200
原创 我的研究方向--思维导图
系列文章目录第一章 即将踏入的研究背景和领域提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录 前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入数据 总结前言研究前提:工业检测领域,已知数据集ABC,训练相应的模型abc,。那么对于新来的数据集D该怎么训练呢?D很渺小,NG样本才有10多个,它该怎么训练出属于它的d呢?一、D的困扰D是名副其实的小样本,深度学习很难容忍这样的存在。D该怎么办?..
2020-10-05 12:30:00 384
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人