人工智能(AI)科技日新月异,近年来生成式AI的崛起给AI领域带来了新的活力。这种全新的AI技术与传统AI有着根本的区别,正在改变我们对AI的认知和体验。今天就让我们一起解码这两者独特的"技能",看看谁更胜一筹。
技术机理大不同
传统AI就像个"学霸",通过学习大量标注数据,从中"识别"出特征模式,再应用于分类预测等"应付考试"的任务。比如通过看成千上万张狗狗和猫咪的图片,就能学会识别出它们的区别。
而生成式AI就像个"多面手",不仅会识别,还能"创造"出全新的内容,比如文字、图像、音频等。它通过模拟训练数据的分布,生成与训练数据相似但又独一无二的新内容。就好比老师让你画一只狗,你不是复制老师的示范图,而是画出一只全新造型的狗狗。
应用场景各有所长
因为擅长识别和分类,传统AI主要应用在需要高精度分析的领域,像医疗诊断(从X光片分析疾病)、金融风控(识别欺诈行为)、语音识别(识别语音指令)等。
生成式AI则因创意无限,主要用于内容创作、艺术设计、游戏开发等创意领域。比如最近很火的ChatGPT,就能"创作"出小说、剧本、新闻稿等文字内容;人脸生成器则能模仿名人肖像"创作"逼真人脸图像。
发展路径纷呈多样
传统AI的前身可追溯到上世纪50年代AI理论的提出,80年代开始兴起专家系统,到2000年代才开始机器学习算法快速普及。
而生成式AI则走了一条"少林精钻"的路线,2014年提出GAN网络、2017年提出Transformer模型等创新算法为其奠定基础,直到2020年OpenAI推出史