分布式存储系统——《Neo4j》

第四阶段 大型分布式存储系统架构进阶

Neo4j

1.第一部分 图 和 Neo4j

1.1 图论

1.1.1 图论起源 — 柯尼斯堡(Konigsberg)[七桥问题]

众所周知,图论起源于一个非常经典的问题——柯尼斯堡(Konigsberg)七桥问题。1738年,瑞典数学家欧拉( Leornhard Euler)解决了柯尼斯堡七桥问题。由此图论诞生,欧拉也成为图论的创始人。

img

欧拉把问题的实质归于"一笔画"问题,即判断一个图是否能够遍历完所有的边(Edge)而没有重复,而柯尼斯堡七桥问题则是一笔画问题的一个具体情境。欧拉证明这个问题不成立。

满足一笔画的图满足两个条件:

  • 图必须是一个完整图
  • 有零个或二个奇数点

1.1.2 图 和 节点

图是一组节点和连接这些节点的关系组成。图形数据存储在节点和关系所在的属性上。属性是键值对表示的数据。

在图形理论中,我们可以使用圆表示一个节点 并且可以向里面添加键值对形式的数据。

img

1.1.3 节点关系表达

简单关系表达

img

此处在两个节点之间创建关系名称“跟随”。 这意味着Profile1 跟随 Profile2。

复杂关系表达

img
这里节点用关系连接。 关系是单向或双向的。
从ABC和XYZ的关系是单向关系。
从ABC和PQR的关系是双向关系。

1.1.4 属性图模型规则

img

  • 图表示节点,关系和属性中的数据
  • 节点和关系都包含属性
  • 关系连接节点
  • 属性是键值对
  • 节点用圆圈表示,关系用方向键表示。
  • 关系具有方向:单向和双向。
  • 每个关系包含“开始节点”或“从节点” 和 “到节点”或“结束节点”

1.2 知识图谱和图库

1.2.1 知识图谱

一种基于图的数据结构,由节点(Node)和边(Edge)组成。其中节点即实体,由一个全局唯一的ID标示,边就是关系用于连接两个节点。通俗地讲,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。

互联网、大数据的背景下,谷歌、百度、搜狗等搜索引擎纷纷基于该背景,创建自己的知识图谱
Knowledge Graph(谷歌)、知心(百度)和知立方(搜狗),主要用于改进搜索质量。

1.2.2 图数据库

一般情况下,我们使用数据库查找事物间的联系的时候,只需要短程关系的查询(两层以内的关联)。
当需要进行更长程的,更广范围的关系查询时,就需要图数据库的功能。而随着社交、电商、金融、零售、物联网等行业的快速发展,现实世界的事物之间织起了一张巨大复杂的关系网,传统数据库面对这样复杂关系往往束手无策。因此,图数据库应运而生。

图数据库(Graph database)指的是以图数据结构的形式来存储和查询数据的数据库。
知识图谱中,知识的组织形式采用的就是图结构,所以非常适合用图库进行存储。

1.2.3 图形数据库优势

img

在需要表示多对多关系时,我们常常需要创建一个关联表来记录不同实体的多对多关系。如果两个实体之间拥有多种关系,那么我们就需要在它们之间创建多个关联表。而在一个图形数据库中,我们只需要标明两者之间存在着不同的关系。如果希望在两个结点集间建立双向关系,我们就需要为每个方向定义一个关系。

也就是说,相对于关系型数据库中的各种关联表,图形数据库中的关系可以通过关系属性这
一功能来提供更为丰富的关系展现方式。因此相较于关系型数据库,图形数据库的用户在对现实进行抽象时将拥有一个额外的武器,那就是丰富的关系。

优势总结:

  • 性能上,对长程关系的查询速度快
  • 擅于发现隐藏的关系,例如通过判断图上两点之间有没有走的通的路径,就可以发现事物间的关联

1.3 Neo4j 基础

1.3.1 什么是Neo4j

Neo4j是一个开源的 无Shcema的 基于java开发的 图形数据库,它将结构化数据存储在图中而不
是表中。它是一个嵌入式的、基于磁盘的、具备完全的事务特性的Java持久化引擎。程序数据是
在一个面向对象的、灵活的网络结构下,而不是严格、静态的表中,但可以享受到具备完全的事务
特性、企业级的数据库的所有好处。
https://db-engines.com/en/ranking

1.3.2 Neo4j 模块构建

Neo4j 主要构建块

  • 节点
  • 属性
  • 关系
  • 标签
  • 数据浏览器

节点

节点是图表的基本单位。 它包含具有键值对的属性

属性

属性是用于描述图节点和关系的键值对

Key =值
其中Key是一个字符串
值可以通过使用任何Neo4j数据类型来表示

关系

关系是图形数据库的另一个主要构建块。 它连接两个节点,如下所示。

img

这里Emp和Dept是两个不同的节点。 “WORKS_FOR”是Emp和Dept节点之间的关系。

因为它表示从Emp到Dept的箭头标记,那么这种关系描述的一样

Emp WORKS_FOR Dept

每个关系包含一个起始节点和一个结束节点。

这里“Emp”是一个起始节点。
“Dept”是端节点。
由于该关系箭头标记表示从“Emp”节点到“Dept”节点的关系,该关系被称为“进入关系”到“Dept”节点。
并且“外向关系”到“Emp”节点。

像节点一样,关系也可以包含属性作为键值对。

标签
Label将一个公共名称与一组节点或关系相关联。 节点或关系可以包含一个或多个标签。 我们可以为现有节点或关系创建新标签。 我们可以从现有节点或关系中删除现有标签。

从前面的图中,我们可以观察到有两个节点。

左侧节点都有一个标签:“EMP”,而右侧节点都有一个标签:“Dept”。

这两个节点之间的关系,也有一个标签:“WORKS_FOR”

注: -Neo4j将数据存储在节点或关系的属性中。

1.3.3 Neo4j的主要应用场景

社交媒体和社交网络

当使用图形数据库为社交网络应用程序提供动力时,可以轻松利用社交关系或根据活动推断关系。
查询社区聚类分析,朋友的朋友推荐,影响者分析,共享和协作关系分析等

推荐引擎和产品推荐系统

图形驱动的推荐引擎通过实时利用多种连接,帮助公司个性化产品,内容和服务。
内容和媒体推荐,图形辅助搜索引擎,产品推荐,专业网络,社会推荐。

身份和访问管理
使用图形数据库进行身份和访问管理时,可以快速有效地跟踪用户,资产,关系和授权。
查询访问管理,资产来源,数据所有权,身份管理,互连组织,主数据,资源授权

金融反欺诈多维关联分析场景

通过图分析可以清楚地知道洗钱网络及相关嫌疑,例如对用户所使用的帐号、发生交易时的IP地址、MAC地址、手机IMEI号等进行关联分析。

1.3.4 Neo4j 环境搭建

Neo4j环境Linux下搭建

(1).切换到Linux下 到安装目录neo4j 上传安装包 或者 下载安装包
使用 ftp 工具上传neo4j-community-3.5.17.tar 到 liunx 下
或者

wget https://neo4j.com/artifact.php?name=neo4j-community-3.5.17-unix.tar.gz

(2). 解压
tar -xvf neo4j-community-3.5.17.tar

(3). 修改配置文件 neo4j.conf

vi conf/neo4j.conf

主要是修改 允许远程访问的地址 把对应的注释打开即可

dbms.connectors.default_listen_address=0.0.0.0

(4).开放对应的访问端口 默认要开放7474 和 7687

firewall-cmd --zone=public --add-port=7474/tcp --permanent
firewall-cmd --zone=public --add-port=7687/tcp --permanent
systemctl reload firewalld

(5).启动

./bin/neo4j start

(6).使用浏览器 访问服务器上的 neo4j

http://192.168.211.133:7474

默认的账号是 neo4j 密码 neo4j 这里第一次登录的话会要求修改密码

Windows下的安装

(1).从https://neo4j.com/download-center/#community 下载最新的Neo4j Server安装文件
可以看到 neo4J 软件 exe 或 zip 格式的所有版本
(2).下载 Neo4j 3.5.17 (zip)
(3).解压
(4).修改配置文件

dbms.connectors.default_listen_address=0.0.0.0

(5) . 通过 neo4j.bat install-service 安装neo4j服务

注意的问题 如果是4.0 以及以上版本需要jdk11
修改文件 bin/neo4j.ps1
Import-Module “neo4j的主目录\bin\Neo4j-Management.psd1”

(6).neo4j.bat启动

neo4j.bat start

(7).使用浏览器 访问服务器上的 neo4j

http://127.0.0.1:7474

默认的账号是 neo4j 密码 neo4j 这里第一次登录的话会要求修改密码

1.3.5 Neo4j数据浏览器

数据浏览器访问
一旦我们安装Neo4j,我们可以访问Neo4j数据浏览器使用以下URL
http:// localhost:7474/browser/

img

Neo4j数据浏览器用于执行CQL命令并查看输出输出。
这里我们需要在美元提示符处执行所有CQL命令:“$” 如 CREATE(cc:CreditCard)

在美元符号后键入命令,然后单击“执行”按钮运行命令。
它与Neo4j数据库服务器交互,检索和显示下面的结果到那个美元提示。
使用“VI视图”按钮以图形格式查看结果。 上图以“UI视图”格式显示结果。

img

导出 CSV 或者 JSON
单击“导出CSV”按钮以csv文件格式导出结果

视图”按钮以图形格式查看结果。 上图以“UI视图”格式显示结果。

img

导出 CSV 或者 JSON
单击“导出CSV”按钮以csv文件格式导出结果

第二部分 Neo4j CQL

CQL简介

CQL代表Cypher查询语言。 像关系型数据库具有查询语言SQL,Neo4j使用CQL作为查询言。
Neo4j CQL

  • 它是Neo4j图形数据库的查询语言。
  • 它是一种声明性模式匹配语言。
  • 它遵循SQL语法。
  • 它的语法是非常简单且人性化、可读的格式。

常用的Neo4j CQL命令/条款如下:
在这里插入图片描述

CREATE

CREATE ( 
	<node-name>:<label-name> 
	[{ 
		<property1-name>:<property1-Value> 
		........ 
		<propertyn-name>:<propertyn-Value> 
	}] 
)

语法说明:

语法元素描述
< node-name>它是我们将要创建的节点名称。
< label-name>它是一个节点标签名称
< property1-name>…< propertynname>属性是键值对。 定义将分配给创建节点的属性的名称
< property1-value>…< propertynvalue>属性是键值对。 定义将分配给创建节点的属性的值

举例:

CREATE (person:Person) 

CREATE (person:Person {cid:1,name:"范 闲",age:24,gender:0,character:"A",money:1000}); 
CREATE (person:Person {cid:2,name:"林婉 儿",age:20,gender:1,character:"B",money:800}); 
CREATE (person:Person {cid:3,name:"庆 帝",age:49,gender:0,character:"A",money:8900});

MATCH RETURN命令语法

MATCH 
( 
	<node-name>:<label-name> 
)
RETURN 
	<node-name>.<property1-name>,
	... 
	<node-name>.<propertyn-name>
语法元素描述
< node-name>它是我们将要创建的节点名称。
< label-name>它是一个节点标签名称
< property1-name>…< propertynname>属性是键值对。 定义将分配给创建节点的属性的名称

举例:

MATCH (person:Person) return person 
MATCH (person:Person) return person.name,person.age
12

关系创建

  • 使用现有节点创建没有属性的关系

    MATCH (<node1-name>:<node1-label-name>),(<node2-name>:<node2-label-name>) 
    CREATE
    	(<node1-name>)-[<relationship-name>:<relationship-label-name>]->(<node2- name>) 
    RETURN 相应的内容
    

    语法说明:

    S.No.语法元素描述
    1MATCH,CREATE,RETURN他们是Neo4J CQL关键字。
    2< noode1-name>它用于创建关系的“From Node”的名称。
    3< node1-label-name>它用于创建关系的“From Node”的标签名称。
    4< node2-name>它用于创建关系的“To Node”的名称。
    5< node2-label-name>它用于创建关系的“To Node”的标签名称。
    6< relationship-name>这是一个关系的名称。
    7< relationship-label-name>它是一个关系的标签名称。
    创建关系 
    match(person:Person {name:"范闲"}) ,(person2:Person {name:"林婉儿"}) 
    create(person)-[r:Couple]->(person2); 查询关系 
    
    match p = (person:Person {name:"范闲"})-[r:Couple]->(person2:Person) return p 
    
    match (p1:Person {name:"范闲"})-[r:Couple]-(p2:Person) return p1,p2 
    
    match (p1:Person {name:"范闲"})-[r:Couple]-(p2:Person) return r
    
  • 使用现有节点创建有属性的关系

    MATCH (<node1-label-name>:<node1-name>),(<node2-label-name>:<node2-name>) 
    CREATE
    	(<node1-label-name>)-[<relationship-label-name>:<relationship-name> 
    	{<define-properties-list>}]->(<node2-label-name>) 
    RETURN <relationship-label-name> 
    
    其中<define-properties-list> 是分配给新创建关系的属性(名称 - 值对)的列表。 
    { 
    	<property1-name>:<property1-value>, 
    	<property2-name>:<property2-value>, 
    	... 
    	<propertyn-name>:<propertyn-value> 
    }
    
    match(person:Person {name:"范闲"}),(person2:Person {name:"林婉儿"}) 
    create(person)-[r:Couple{mary_date:"12/12/2014",price:55000}]->(person2) return r;
    
  • 使用新节点创建没有属性的关系

    CREATE 
    	(<node1-label-name>:<node1-name>) 
    	-[<relationship-label-name>:<relationship-name>]-> 
    	(<node1-label-name>:<node1-name>)
    
    create(person1:Person {cid:4,name:"长公 主",age:49,gender:1,character:"A",money:5000}) 
    -[r:Friend]-> 
    (person2:Person {cid:7,name:"九品射手燕小 乙",age:48,gender:0,character:"B",money:1000})
    
  • 使用新节点创建有属性的关系

    CREATE 
    	(<node1-label-name>:<node1-name>{<define-properties-list>}) -
    	[<relationship-label-name>:<relationship-name>{<define-properties-list>}] 
    	->(<node1-label-name>:<node1-name>{<define-properties-list>})
    
    create 
    	(person1:Person {cid:9,name:"靖王世 子",age:23,gender:0,character:"A",money:3000}) 
    	<-[r:Friend {date:"11-02-2000"}]-> 
    	(person2:Person {cid:8,name:"二皇子",age:24,gender:0,character:"B",money:6000})
    

    关系和节点的属性可以使用的类型
    在这里插入图片描述

CREATE创建多个标签

CREATE (<node-name>:<label-name1>:<label-name2>.....:<label-namen>) 
如:
 CREATE (person:Person:Beauty:Picture {cid:20,name:"小美女"})

WHERE 子句

简单的WHERE子句 
	WHERE <condition> 
复杂的WHERE子句 
	WHERE <condition> <boolean-operator> <condition>

where 中的比较运算符 和 之前mysql的相同 如 = != <> > < 等
在这里插入图片描述

MATCH (person:Person) 
WHERE person.name = '范闲' OR person.name = '靖王世子' 
RETURN person

DELETE 子句 和 REMOVE子句

DELETE 子句

  • 删除节点。
  • 删除节点及相关节点和关系。
match p = (:Person {name:"林婉儿"})-[r:Couple]-(:Person) 
delete r

REMOVE子句

  • 删除节点或关系的标签
  • 删除节点或关系的属性
MATCH (person:Person {name:"小美女"}) 
REMOVE person.cid

SET子句

  • 向现有节点或关系添加新属性
  • 更新属性值
MATCH (person:Person {cid:1}) 
SET person.money = 3456,person.age=25

ORDER BY 子句

“ORDER BY”子句,对MATCH查询返回的结果进行排序。
我们可以按升序或降序对行进行排序。
默认情况下,它按升序对行进行排序。 如果我们要按降序对它们进行排序,我们需要使用DESC子句。

MATCH (person:Person) 
RETURN person.name,person.money 
ORDER BY person.money DESC

SKIP 和 LIMIT

Neo4j CQL已提供“SKIP”子句来过滤或限制查询返回的行数。 它修整了CQL查询结果集顶部的结果。
Neo4j CQL已提供“LIMIT”子句来过滤或限制查询返回的行数。 它修剪CQL查询结果集底部的结果。

MATCH (person:Person) 
RETURN ID(person),person.name,person.money 
ORDER BY person.money DESC
skip 4 limit 2

DISTINCT排重

这个函数的用法就像SQL中的distinct关键字,返回的是所有不同值。


```java
MATCH (p:Person) RETURN Distinct(p.character)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

管程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值