自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 asdasdasd

asd

2023-07-18 11:43:58 98 1

原创 人工智能作业10

VGG Net在当年的ImageNet大规模视觉识别挑战(ILSVRC)中取得了优异成绩,以其简洁的结构和卓越的性能获得了广泛关注。VGG Net的核心思想是通过使用较小的卷积核(如3x3)和多个连续卷积层来增加网络深度,从而提高模型的表达能力。VGG Net有多个版本,如VGG-16和VGG-19,这些数字代表网络中包含的权重层(卷积层和全连接层)的数量。尽管AlexNet最初是针对ImageNet数据集开发的,但它的架构和训练方法也可以应用于其他图像分类任务,如CIFAR数据集。

2023-06-25 15:27:33 116

原创 人工智能作业12

LSTM在计算过程中,会有一条"细胞状态"直接在各个时间步之间传递。在每个时间步,都会有一些信息被遗忘,一些新信息被添加进来。这个过程通过"遗忘门"和"输入门"来控制。因为细胞状态的这种线性传递性,使得LSTM能够在一定程度上避免梯度消失问题。长短期记忆网络是一种特殊的递归神经网络,它通过特别设计的网络结构来解决普通RNN在处理长序列数据时的梯度消失和爆炸问题。

2023-06-25 15:26:49 91

原创 人工智能作业11

在深度前馈网络中,当使用如sigmoid或tanh等饱和性激活函数时,网络在训练过程中可能会出现梯度消失的问题。相反,如果梯度过大,则可能会导致梯度爆炸,使得网络训练变得不稳定。这意味着在反向传播过程中,当梯度传播到靠近输入层的网络部分时,它们的值可能已经变得非常接近于零。序列到序列模型是一种在深度学习中用于生成序列的模型,特别适用于那些输入和输出都是序列的问题,如机器翻译、语音识别、文本摘要等。:与梯度消失相反,梯度爆炸是指在训练过程中,梯度变得非常大,这会导致权重更新过大,使得网络不稳定。

2023-06-25 15:26:10 97

原创 人工智能作业9

【代码】人工智能作业9。

2023-06-25 15:24:35 66

原创 人工智能作业8

步长:在卷积神经网络中,步长指的是卷积核在输入数据上移动的步数。例如,步长为1意味着卷积核每次移动一步,步长为2意味着卷积核每次移动两步。 填充:在卷积神经网络中,填充是指通过向输入数据的边缘添加额外的“0”来保持空间维度。这样可以让卷积核处理边缘像素,并保持输出的空间维度不变。 感受野:感受野是神经网络中某一层的神经元对原始输入数据的感知范围。简单地说就是每个神经元能看到的输入数据的区域大小。 局部感知:局部感知意味着在卷积神经网络中,每个神经元只与输入数据的一个小区域相连,这使得神经网络能够捕捉到

2023-05-15 11:23:09 115 1

原创 人工智能作业7

卷积是一种数学运算,其实质是在两个函数之间进行积分运算。在计算机视觉领域中,卷积主要是通过滑动卷积核在输入数据上进行特征提取和图像处理。卷积核是一组固定的权重参数,用于对输入数据进行特征提取和卷积运算。卷积核通常是一个小的矩阵或者是一组矩阵,其大小和形状可以根据需要进行调整。卷积核的大小和形状决定了卷积运算提取特征的方式。多通道是指输入数据中包含了多个通道的信息,例如RGB彩色图像就包含了3个通道的信息,分别是红色通道、绿色通道和蓝色通道。

2023-05-15 11:21:58 145 1

原创 AI作业4

思想:KNN是找点P距离最近的k个点,判断这k个点多数是什么特征(带标签),则P表示的样本就判断为什么特征;算法:样本中心化(使得计算量变小)->计算协方差矩阵(表示各点之间的相关程度,协方差为0则彼此无关)->协方差矩阵的特征值分解,对特征根排序->选择前L个最大特征根对应的特征向量组成映射矩阵(投影后选方差最大的L个)K-means是初始化质心后根据质心与各点的距离判断是否属于一个集合,然后利用数据重新计算质心位置,再重新将数据放入距离最近质心的集合中,反复迭代,直至质心基本保持不变。

2023-04-02 16:28:35 82

原创 AI作业3

分类是判别式方法,因为它通过已有的标记数据建立输入和输出之间的映射,从而对新的数据进行分类。聚类是生成式方法,因为它通过数据的统计特性来学习数据的分布,从而对数据进行聚类。生成式模型的优点是可以对数据的分布进行建模,从而生成新的数据;监督学习是判别式方法,因为它通过已有的标记数据建立输入和输出之间的映射,从而预测新的输出。无监督学习是生成式方法,因为它通过数据的统计特性来学习数据的分布,从而生成新的数据。判别式模型是通过输入数据直接预测输出结果的模型,不考虑输入数据与输出结果之间的概率分布关系。

2023-04-02 16:24:23 71

原创 AI作业2

1

2023-03-19 15:26:13 152

原创 AI作业1

1

2023-03-08 20:36:45 142 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除