SparkSession案例:分组排行榜

该博客介绍了一种使用Scala编程语言和Apache Spark处理数据的方法,创建了一个Maven项目,配置了相关依赖和构建插件。通过读取HDFS上的成绩文件,进行数据处理,然后利用Spark SQL进行分组排名,展示分组排行榜的前3名。主要涉及SparkSession的使用、数据读取、数据转换以及SQL查询操作。
摘要由CSDN通过智能技术生成

(一)新建Maven项目

  • 设置项目信息(项目名、保存位置、组编号、项目编号)
    在这里插入图片描述
  • 将java目录改成scala目录
    在这里插入图片描述

(二)添加相关依赖和构建插件

  • 在pom.xml文件里添加依赖与Maven构建插件
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>net.llj.spark</groupId>
    <artifactId>SparkGradeTopNSQL</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>2.11.12</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>
    </dependencies>
    <build>
        <sourceDirectory>src/main/scala</sourceDirectory>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.3.0</version>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.3.2</version>
                <executions>
                    <execution>
                        <id>scala-compile-first</id>
                        <phase>process-resources</phase>
                        <goals>
                            <goal>add-source</goal>
                            <goal>compile</goal>
                        </goals>
                    </execution>
                    <execution>
                        <id>scala-test-compile</id>
                        <phase>process-test-resources</phase>
                        <goals>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>


</project>

(三)创建日志属性文件

  • 在资源文件夹里创建日志属性文件 - log4j.properties
log4j.rootLogger=ERROR, stdout, logfile
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spark.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

(四)创建分组排行榜单例对象

在net.huawei.sql包里创建GradeTopNSQL单例对象
在这里插入图片描述

package net.llj.sql

import org.apache.spark.sql.{Dataset, SparkSession}



object GradeTopNSQL {
  case class Score(name:String,score: Int)
  def main(args: Array[String]): Unit = {
    //创建或得到Spark会话对象
    val spark = SparkSession.builder()
      .appName("GradeTopNSQL")
      .master("local[*]")
      .getOrCreate()
    //读取HDFS上的成绩文件
    val lines:Dataset[String] = spark.read.textFile("hdfs://192.168.1.120:9000/input/grades.txt")
    //显示数据集内容
//    lines.show()
    //导入隐式转换
    import spark.implicits._
    //定义成绩样例类

    //创建成绩数据集
    val gradeDS =lines.map(
      line => { val fields = line.split(" ")
        val name =fields(0)
        val score = fields(1).toInt
        Score(name,score)
      }
    )
    //显示
//    gradeDS.show()
    //将数据集转换成数据帧
    val df = gradeDS.toDF()
    //显示数据帧的内容
//    df.show()
    //基于数据帧创建临时表
    df.createOrReplaceTempView("t_grade")
    //查询临时表,得到分组排行榜
   val top3 = spark.sql(
      """
        |SELECT  name,score FROM
        | (SELECT name,score,row_number() OVER (PARTITION BY name ORDER BY score DESC) rank from t_grade) t
        | WHERE t.rank<=3
        |""".stripMargin
    )
    //
    top3.show()
  }
}

(五)本地运行程序,查看结果

  • 原数据为:
    在这里插入图片描述

  • 处理排序后的数据为:
    在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值