为什么要库分表?
当用户量增涨到一定程度,单机数据库已经没法满足需求(sql已经没办法解决),就需要分布式来分解我们数据库压力。
数据库分布的进化过程
分库分表中间件
- Mycat
- Sharding-JDBC
读写分离: 部署一个master和多个salve库。master只负责增,删,改。salve负责查询。工具-amoeba
垂直分区: 虽然读写分离了,但数据量增大难免还是会慢。在读写分离的基础上我们将数据库不同业务表拆分到不同库里。(将订单相关的表放到一个库里,将用户相关的表存到另一个库里)这样就解决了一个数据库过大的情况。
水平拆分: 将一个表拆分成多个子表。比如说将一个有10000条的user表,拆分成10个表,10个表承担压力。当然这个拆分是通过某种契约按段位进行数据存储。
阿里云的将每个RDS分了8个子库。
阿里云的数据库拆分(DRDS)
- 购买的时候一定要看好分区
- DRDS创建新数据库时,不会影响RDS已经存在的数据库。
- DRDS的前身是淘宝的TDDL(github已经多年没有更新过了)
大家有兴趣可以看下源码:https://github.com/alibaba/tb_tddl
- DRDS事务使用二阶段提交来保证原子性和一致性
- TDDL原理—应用层连接多个数据源,中间有一个叫做DBRoute的技术对数据库进行统一的路由访问。DBRoute对数据进行多库的操作、数据的整合,让应用层像操作一个数据源一样操作多个数据库。数据放置按照一定的规则进行计算和路由,从而达到分散到多个 RDS上。当然路由健也可以跟据自己定义的外键。