ural 1012

1012. K-based Numbers. Version 2

Time limit: 0.5 second
Memory limit: 16 MB
Let’s consider  K-based numbers, containing exactly  N digits. We define a number to be valid if its  K-based notation doesn’t contain two successive zeros. For example:
  • 1010230 is a valid 7-digit number;
  • 1000198 is not a valid number;
  • 0001235 is not a 7-digit number, it is a 4-digit number.
Given two numbers  N and  K, you are to calculate an amount of valid  K based numbers, containing  N digits.
You may assume that 2 ≤  K ≤ 10;  N ≥ 2;  N +  K ≤ 1800.

Input

The numbers  N and  K in decimal notation separated by the line break.

Output

The result in decimal notation.

Sample

input output
2
10
90

转移方程和ural 1009 一样。 不过数据加大了。。 这样会导致溢出。 java大法好!

<pre name="code" class="java">import java.math.BigInteger;
import java.util.Scanner;

public class Main {
			static Scanner s = new Scanner(System.in);
			static BigInteger dp[][] = new BigInteger[1900][3];
			public static void main(String[] args) {
				int n = s.nextInt();
				BigInteger k  = s.nextBigInteger();
				dp[1][0] = k.subtract(new BigInteger("1"));
				dp[1][1] = new BigInteger("0");
				for(int i=2; i<=n; i++){
					dp[i][0] = dp[i-1][1].add(dp[i-1][0]).multiply(dp[1][0]);
					dp[i][1] = dp[i-1][0];
				}
				BigInteger res = dp[n][0].add(dp[n][1]);
				System.out.println(res);
			}
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值